& LEONARDO

Challenges to gate-based quantum optimization algorithms for industrial use-cases

Matteo Vandelli

Research Fellow, HPC Lab - Quantum Computing Leonardo Labs, Genova – Fiumara, Italy matteo.vandelli.ext@leonardo.com

CINECA, HPCQC Workshop, 15.12.2023

Combinatorial optimization: the antenna placement problem

inactive

12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0

Longitude

36.0

© Leonardo S.p.A. and subsidiaries

 $\lambda = 0 \rightarrow$ unconstrained

 $\lambda > 0 \rightarrow \text{constrained}$

2

Emulating quantum algorithms on the *davinci-1* cluster

Two algorithms described by the same circuit:

$$|\beta,\gamma\rangle = U(\beta,\gamma) |+\rangle^{\otimes n}$$
 with $U(\beta,\gamma) = \prod_{n=1}^{p} e^{-i\beta_n \sum_i X_i} e^{-i\gamma_n H_s}$

QAA: linear Trotterization $\rightarrow \beta = \Delta \left(1 - \frac{k}{p}\right), \gamma = \Delta \frac{k}{p}$ **QAOA:** optimization in 2*p*-dimensions, $(\beta, \gamma) = \operatorname{argmin} f(\beta, \gamma)$

[QAA: Fahri et al., arXiv:0001106; QAOA: Fahri et al., arXiv:1411.4028]

All the calculations performed on the proprietary davinci-1 cluster equipped with AMD EPYC 7402 24-Core CPUs and NVIDIA A100 GPUs.

- MPI framework for global optimization using a **multi-walker optimization** initialized around an **INTERP** strategy
- COBYLA minimizer for local optimization

QAOA: 32 walkers x (8 CPU cores + 1 GPU) QAA & single-walker QAOA: 48 CPU cores + 1 GPU

禿

3

Approximation ratio at large depths

Approximation ratio:

Fixed shots estimator: $\tilde{\alpha} = \frac{(\sum_k H(z_k)/N_{meas})}{H_{min}}$ $1.0 - N = 25, \lambda = 0$ $1.0 - N = 30, \lambda = 0$ Estimated approx ratio $\widetilde{\alpha}$ ß 0.8 Estimated approx ratio 0.6 0.4 OAA with $\Delta = 0.1$ 0.2 0.2 QAA with $\Delta = 0.5$ QAA with $\Delta = 0.1$ QAA with $\Delta = 2.6$ QAA with $\Delta = 0.5$ QAOA single-walker QAOA single-walker 0.0 0.0 200 400 200 400 0 0 p_{tot} p_{tot}

 $\alpha = \langle H_{\lambda} \rangle / H_{min}$

Approximation ratio as a function of the number of qubits: Constrained case with $\lambda = 1$

 $p_{min}(QAA) \sim 100 (N - 26)$ $p_{min}(QAOA) \sim \exp(N) \text{ or } poly(N) \text{ (not linear)}$

M. Vandelli, A. Lignarolo, C. Cavazzoni, D. Dragoni, arXiv:2311.11621

米

Generation of high-quality solutions

Probability of measuring the ground state

Emulation using the full statevector:

- QAOA has depth p = 10, while QAA has depth p = 500 (fixed computational time $p_{tot} = 500$ in both cases).
- In the constrained case ($\lambda = 1$), $p(z_{gs})$ is much lower.

For this use case, the probability $p(z_{gs})$ decreases exponentially with the system size in all cases.

M. Vandelli, A. Lignarolo, C. Cavazzoni, D. Dragoni, arXiv:2311.11621

Generation of high-quality strings

N = 30, $N_{shots} = 10^4$, different values of p

- The cumulative counts estimate the probability of measuring a string with higher approx ratio.
- The probability is already large enough to guarantee a measurement of an accepatble string if we fix $\alpha \le 0.95$

米

5

Summary & conclusions

Antenna placement problem: Unstructured problem with a weighted graph

 $\lambda = 0$: sparse connectivity $\lambda > 0$: full connectivity

Approximation ratio with QAA and QAOA: rather robust against shot noise Fixed α requires $p \sim N$ for QAA (and increases faster for QAOA)

QAA: very deep circuits; **QAOA**: NP-hard optimization in *p*

Probability: for this protoypical unstructured problem, $p(z_{gs})$ decreases exponentially *vs N* for both QAA and QAOA

10¹ 10

Cumulative distribution: These algorithms allow to measure good strings with high probability, if some tolerance is allowed

M. Vandelli, A. Lignarolo, C. Cavazzoni, D. Dragoni, arXiv:2311.11621

· · · · · · · · · · · ·

.

THANK YOU FOR YOUR ATTENTION

leonardo.com

E-mail: matteo.vandelli.ext@leonardo.com

													•	0	•	•	•	•	•	•	•	•
				۰	0	0	0	0	0	0	۰	0	•	0	•	•	•	•	•	•	•	
											•	•	•	0	•	•	•	•	•	•	0	•
	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	
							•	•	•	•	•	•			•			•	•	•	•	•
							Ū	Ŭ	Ū	Ū	Ŭ	Ŭ	Ŭ	÷							Ū	
					۰	۰	•	•	•	۰	۰	۰	۰	•	•	•	•	•	•	•	•	•
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠
					٠	٠	۰	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠
											٠	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠
		٠		•	•	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	•	٠	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•
											•	•	•	•	•	•	•	•	•	•	•	•
	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•
										•	•	•		0	•	•	•	•	•	•	•	•
					•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	
•	•				•	•		•	•		•				•	•	•	•	•	•	•	

Academic vs practical optimization: our contribution

Quantum algorithms from an «academic» point of view:

- 1. Regular problems with symmetries
- 2. Unweighted graphs/integer parameters, sparse connectivity
- 3. Focus often on approximation ratio (cost, energy,...)

Practical point of view:

- I. Unstructured problems with few or no symmetries
- 2. Weighted graphs, Constraints (graphs become fully connected)
- **3**. Focus is on the solution string

Additionally, industrial problems are large \implies number of variables > $10^{3-}10^{4}$

