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Introduction
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The objective is to use the Deep Reinforcement Learning to decide the scheduling
for the input pulse parameters for Aquila neutral atoms quantum computer
in order to maximize the probability to find in the output a configuration that

solves the Maximum Independent Set problem for an arbitrary graph.
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Maximum Independent Set problem
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Maximum Independent Set (MIS) problem is the largest possible group of
vertices within a graph such that no pair of selected vertices share an edge.
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Diagonal-connected unit-disk grid graphs (DUGG)

Unit disk
graph

Diagonal-connected
unit-disk grid graphs
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Real-world Maximum Independent Set problem

Antenna placement problem in Boston
From QuEraComputing Github
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Neutral Atoms Quantum Computers

The Aquila magneto-optical
trap in QuEra’s facilities
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Ground and Rydberg states
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|r> = Rydberg state
|g> = Ground state
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Rydberg Blockade
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Analog Quantum Mode

Van Der Waals
interactions
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Source: Jonathan Wurtz et al. Aquila: QuEra's 256-qubit neutral-atom quantum computer, 2023
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Aquila simulations and MIS probability
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Standard Pulse from Quera
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Reinforcement Learning

reward

Environment
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maxX, En[Xn=o V"R, i , 1

n(a|s) is the policy ¥ €[0,1] discount factor

Source: Andrew G. Barto, Reinforcement Learning: An Introduction, 2018
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Deep Reinforcement Learning

l Reward r
Agent sac/ppo Policy
(s, a)
state Take action a Environment
S * i
t

Observe state s

PPO - Proximal Policy Optimization
SAC - Soft Actor-Critic
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Reinforcement Learning Steps
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Reinforcement Learning Reward and State

r =s(wir, + w,r, + rx)

e se[0,1]

* w,; and w, are tunable hyperparameters such that wl +w2 =1

* r,e[-1,0] is a penalization reward if the initial graph is different from the current one
* r,€[-1,0] is the energy reward

* r,is the probability reward
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MIS probability
with standard
pulse

MIS probability
- With Deep RL

detuning [rad/s] amplitude [rad/s]

phase [rad]

1.5

1.0

0.5 4

Deep RL pulse may drastically increase MIS probability

le7

0.0

le7

o N - (o)} [o+]
1 ! | ! !

0.0

Pulse obtained with Deep RL

"w'\"r
¢ (ag <
- ) 7
LY 21
A

Neutral atom quantum computing scheduling by Deep Reinforcement Learning

—

Manuel Peracci



mean probability

SAC makes learning faster wrt PPO
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Conclusions

* Non decreasing detuning makes learning faster (Detuning < 0 favourites ground
states, detuning > 0 favourites Rydberg states)
 Adding memory to the state makes learning faster

 Statistics: MIS probability of RL decreases with number of node similar to standard

pulse
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