O O Perfect

Enabling the large scale quantum revolution

Large Scale Quantum for all

Guido Masella (CTO)

QPerfect

Company introduction & MIMIQ-CIRC product presentation

Enabling the fault-tolerant quantum revolution

December 14th, 2023

- Spin-off from research in Strasbourg, at the European Center For Quantum Sciences (CESQ)
- Created in May 2023
- Awarded the iLab grand prix in 2023
- Leveraging a strategic location at the hearth of Europe, situated at the border between France, Germany and Switzerland

December 14th, 2023

HPCQC 2023, CINECA, Bologna

3

Our MISSION

QPerfect

We develop software and hardware solutions to **help designing** quantum computers, **benchmark** algorithms, and **improving** existing quantum computers

Enabling the fault-tolerant quantum revolution

December 14th, 2023

Our developments

Large scale quantum circuit simulators

Simulate 100s of qubits

- Faster than widely used solutions;
- Exactly, for entanglement bound circuits;
- or with higher fidelities than any current NISQ hardware.

Virtual Quantum Computer toolbox for Design Automation

- Fully customizable: large library of devices and noise models;
- Hardware accurate: waveform level simulation of full QC setups

Hardware accurate simulation toolbox

Hardware optimized gate sets and algorithms

Fastest and highest-fidelities protocolst yet

- Custom designed: adapt to every need and platform;
- Hardware-specialized: exploit hardware features

MIMIQ: torwards an holistic Quantum Design Automation (QDA) tool

- Developer tools for quantum computing
- Design algorithms or virtual quantum processors
- Evaluate the performances of new ideas
- Optimize from hardware to application software

MIMQ-CIRC Virtual Quantum Computer Design, simulate and optimize quantum software

December 14th, 2023

HPCQC 2023, CINECA, Bologna

QPerfect

7

MIMIQ-CIRC: universal quantum circuit simulator

Exponential Complexity

Simulating quantum systems is hard

$|\psi\rangle \longrightarrow 2^N$ Complex Numbers

On a Classical Computer

32 qubits 64 **GB** of RAM

- 40 qubits 16 **TB** of RAM
- 50 qubits 16 **PB** of RAM

Also time scales exponentially!

What we do in MIMIQ:

- Heavily optimized implementation (explicit SIMD).
- Circuit optimization and compression.
- Alternative techniques: Matrix Product States (MPS)

December 14th, 2023

Real applications do not use the full state space

Restricted by noise, finite algorithm sizes, limited connectivity

December 14th, 2023

Matrix Product States

Strasbourg Cathedral

Original

50% compression ratio

5% compression ratio

Example from manybody quantum physics:

Wellnitz, Pupillo, Schachenmayer, Commun Phys 2022

Exact quantum molecular (electro-vibrational) dynamics of 160 coupled molecules

December 14th, 2023

MIMIQ-CIRC Specifications

Fast statevector simulator engine. Meticulously optimized down to the level of single CPU instructions.

Large-scale Matrix Product State engine (MPS). *

Simulations up to hundreds of gubits, effective gate error below state-of-the-art hardware platforms.

- Automatic algorithm switching.
- Intuitive **Python** and **Julia** interfaces.
- Complete OpenQASM support.
- SaS solution: Asynchronous workflow

OASM

Benchmarks

Dense random Clifford + T benchmark using MIMIQ-CIRC for up to 2048 qubits

Simulations performed on a single computational node with a maximum run time of 300 seconds per data point.

December 14th, 2023

Optimization & Max-Cut

- Optimization problems in chemistry, finance, logistics and AI.
- Quantum optimizers: early value in NISQ era.
 Including VQE, QAOA, and digital adiabatic simulations.

On MIMIQ-CIRC: 40 repetitions, unoptimized parameters Number of gates (multiqubit)7640 (5240)Depth884Averaged multiqubit gate error0.00018%Solution probability3/250Execution time1163s ~ 19 minutes

Quantum Error Correction

- Cutting-edge QEC protocols with hundreds of qubits, including:
 - Non-Clifford operations
 - Mid-circuit measurements
 - Conditional operations
 - Realistic noise (coming soon)

Example: Surface Code	161	qubits	
Distance d - 0	2880	2-qubit gates	
Distance $u = 9$	881	measurements	
I = 10 cycles	~ 20 minutes		

Integer Factorization

- Enormous importance for security and cryptography: basis of widely-used security protocols (RSA)
- Shor's Algorithm provides superpolynomial speedup. [Shor IEEE Comput. Soc. Press. 1994]
- Benchmarking quantum computers

[Whitlock & Kieu, Quantum Factoring Algorithm using Grover Search, 2023]

- Given an n-bit integer N find the prime factors such that N = p q
- Factor *n*-bit integers using Grover Search with (2 n 5) qubits

Execution with decomposed operations

	# bits	Time (s)	Trials / Grover steps	Hilbert space size	# multiqubit gates
143 = 13 x 11	8	0.0019	1/3	211	1326
2867 = 61 x 47	12	6.4	1/12	2 ¹⁹	26894

With compiled gates:

11212757 = 4999 x 2243 Time: 1.35 seconds Grover steps: 804 Hilbert space dim: 2²⁰

Advancing MIMIQ-CIRC through HPC

What is in MIMIQ-CIRC future?

- It is not always a matter of speed. Solving large problems require simulating larger systems and higher fidelities.
- Ongoing exploratory work on heterogeneous and massively parallel computing.
- Quantum inspired algorithms:
 MIMIQ provides a universal interface for MPS-based

solvers and algorithms

Interested in our journey?

Here's what you can do next:

Investor:

Contact us to explore opportunities and delve deeper into the company vision.

Product Enthusiasts:

Reach out to us to join our pre-release phase for a 15-day free trial.

Resource Collaboration:

Have resources to share? Let's discuss collaborations.

guido.masella@qperfect.io

Enabling the large scale quantum revolution

Thanks for your attention

QPerfect is supported by

December 14th, 2023