Ve build quantum computers

QV

High Performance Computing and Quantum Computing – Sixth Edition

Head of Business Development

Introduction to IQM

IQM

IQM builds and delivers quantum computers

OUR MISSION

We build world leading quantum computers for the well-being of humankind, now and for the future.

Full-stack solutions with **co-design**

 $\begin{array}{l} \text{Own facilities} \rightarrow \\ \textbf{fast turnaround} \end{array}$

IQM's Private Foundry: **600 m2**

200M€+ funding

IQM Has Already Achieved a Global Footprint

We Build Quantum Computers

IQM: A Full-stack Quantum Computing Company

IQM's unique hardware capabilities:

Strategic Advantage: Private Quantum Foundry in Europe

- 200 mm fabrication facility optimized for QPU piloting and production
 - Location: Espoo, Finland
 - Investment: € 20 Million
 - Area: 560 m2
- Advantages:
 - Accelerates design & production cycle
 - Guarantees production stability
 - Know-how generation and possibility for foundry service
 - Reinforces the in-house developed quantum design automation
- Capabilities
 - Fabrication, new material research, 3D integration, product delivery

IQM Quantum Processor Generations

QC: Quantum Computer, QPU: Quantum Processing Unit, (*) Subject to change with average system lead times of 1 year

QM

IQM is Demonstrating Best-in-class Quality and Accuracy

Fidelity is a measure of the accuracy or quality of a quantum operation or quantum computation.

- If the fidelity of logic gates is too low, calculations will fail because errors will accumulate faster than they can be corrected.
- IQM's long-distance tunable coupler* is crucial for achieving high fidelity.

* F. Marxer et al., arXiv preprint arXiv:2208.09460 (2022) and 2 patents currently pending

QPU's Architecture

IQM-20 QPU contains 20 computational qubits and 30 tunable coupler qubits (in total 50 physical qubits). Tunable coupler for qubits separated by distances up to 2 mm*:

- lower qubit-to-qubit crosstalk
- create space for individual readout resonators
- → faster gates, higher fidelity
- \rightarrow faster readout, lower errors

Latest results for 20-qubit Quantum Processor

Qubit count	20
1Q fidelity	median 99.91 %
	best 99.944 ± 0.003 %
2Q fidelity	median 98.25 %
	best 99.1 ± 0.3 %
Quantum vo	olume* 16
(Classical simulation complexity)	
Q-score*	8
(Size of combina	atorial optimisation task solved)
Largest GH	Z genuinely 9 tate*
On par with	leading US companies
* measured with readout-error mitigation	

Tunable couplers vs. Fixed frequency couplers

× More challenging design and build

Fixed frequency coupling architecture

- Less lines per qubit
- ✓ Cheaper BOM
- × High idling error, degrade performance
- × Slower gates due to the need of lower interaction strength to minimize leakage
- × Lower fidelity

IQM Product and Service Portfolio

On-premises / Product delivery

IQM Spark[™]

- 5-qubit superconducting quantum computer for research and education
- Full control of your experimental setup
- Under one million euros

On-premises / Product delivery

IQM Radiance[™]

- State-of-the-art on-premises offering
- Deliver more computational value with a lower environmental footprint
- Integration-layer to HPC centres

Service provider

IQM Services

- Education and executive trainings
- · Consulting services

YOUR TURNKEY SOLUTION FOR QUANTUM RESEARCH AND EDUCATION.

O D

U

IQM

R

QM

*Artist's conceptual rendering. Actual product design may diffe

IQM Spark[™]: Empowering Quantum Exploration

Your turnkey solution for quantum research and education.

Technical specifications

Processor: 5 qubits	Guaranteed	Typical
Single-qubit gate fidelity	≥ 99.7%	≥ 99.9%
Two-qubit gate (CZ) fidelity	≥ 96%	≥ 98%
Single-qubit gate duration	≤ 60 ns	≤ 40 ns
Two-qubit gate (CZ) duration	≤ 100 ns	≤ 60 ns
Readout fidelity*	≥ 92%	≥ 95%
Quantum volume*	≥ 8	≥ 8
Q-score*	≥ 4	≥ 5

Property	5-qubit configuration
Water cooling	15 kW
Air conditioning	1 kW
System floor footprint	1.3 m x 5.0 m (In the standard layout)*
Minimum ceiling height	290 cm

Software Packages	Interface type	Intended user
Cirq on IQM	Python	Human
Qiskit on IQM	Python	Human
EXA experiment	Python	Human
Computation Control	RESTful HTTP	Machine
IQM Station Control	Non-RESTful HTTP	Machine

*with TWPA option ordered.

Ready for your extraordinary journey into quantum computing?

Contact us today for a free personalized demo and transform quantum education and research for the better!

https://meetiqm.com/products/iqm-spark/

Learn more

We Build Quantum Computers

NTRODUCING

YOUR GATEWAY TO QUANTUM ADVANTAGE

*Artist's conceptual rendering. Actual product design may differ

IQM Radiance™: Your Gateway to Quantum Advantage

Artist's conceptual renderings. Actual product design may differ

IQM Radiance unleashes the potential of quantum computing, delivering tangible value to users.

Quantum utility: potentially solve problems with less computing time, or power, or more accurately than comparable classical devices

Business value: solve real-life problems by executing simulation, optimization, and quantum machine learning algorithms.

Preparing the future:

delve into fault-tolerant quantum computing, experimenting with error correction codes and logical qubits.

Why choose IQM for your onpremises quantum computer?

Full and secure access

IQM grants you complete and secure hardware access, accelerating research and driving innovation.

Technology sovereignty

IQM offers quantum hardware which can be regularly upgraded to deliver technological sovereignty.

Full-stack system integrator

As a full-stack integrator, IQM expedites your quantum ecosystem development, thanks to our experience in building national quantum programs and quantum accelerators.

Low-latency data transfer

Having quantum computers on your premises ensures low-latency data transfer between classical and quantum systems.

Sustainable alternatives

Quantum technologies deliver a sustainable alternative to growing computational needs.

Made in Europe

We have the largest quantum hardware team in Europe, comprising of world-renowned quantum experts. We are not red taped by restrictions such as ITAR.

HPC Challenges

Compute architecture evolution

IQM

There is no way we are going to make it using conventional computers

IQM is part of the quantum energy initiative to explore the energy effectiveness of quantum computing.

There are signs for a so called "Quantum Energy Advantage"

the quantum energy initiative

Quantum Sustainability

We Build Quantum Computers

IQM

Hybrid Classical-Quantum Architectures

Hardware considerations: locality

Remote access

+ Easy access to multiple technologies.

- Data security.
- Shared access. Pay-as-you-go | oversubscribed systems.
- Possible 3rd party hosting and maintenance.

On-premises

- + Same high-speed network.
- Data security.
- + Improved execution efficiency
- for heterogeneous workflows.
- Maintenance by specialized staff.
- Acquisition cost.

On-node

- + Ultimate performance.
- + Advanced access to, e.g. memory.
- Requires significant leaps in QC tech.

IQM Solution

Steps to build the future of HPC

Hardware of a HPC integrated quantum computer

TRADITIONAL LAB LAYOUT

- "An assembly of laboratory equipment"
- Custom layout for each space
- 4 different electrical supplies
- 3 connections to clean filtered cooling water
- Site access to CDA standard compressed air
- Liquid nitrogen filling by user
- Fiberoptic networking

HPC INTEGRATED PRODUCT

- "Just bring power, network, and water," a product suitable for datacenters
- Framed and fits a standard 3m pitch isle of hardware
- Unified power with internal distribution and 3-phase load balancing.
- Internal LN2 and clean dry air generation and filling*.
- Wider range of compatible cooling water due to an internal secondary loop*.
- Sub-structure to install into standard 60cm pitch false floor with nominal weight limits*.
- Network connectivity by Ethernet
- Internal metrics for system
 maintenance and health checks

*optional, site dependent

QN

Hybrid Classical-Quantum Algorithms

QUANTUM ADVANTAGE

Quantum advantage has been theoretically demonstrated on a number of algorithms, but only a small number of applications were explored so far

Most developments to date have focused on algorithms running only on quantum computers

Combining classical and quantum computers is likely to produce many algorithms with a quantum advantage

e.g. Variational Quantum Algorithms

Integrating quantum computing into HPC requires a similar approach to other accelerators we have seen in the past

The classical host is the computer which requires tasks to be computed using the accelerator

The benefits associated to different types of algorithms are highly dependent on the hardware interface between the supercomputer and the quantum accelerator

Hybrid Classical-Quantum Architectures

Software considerations

- System-wide Quantum Resource Management is key to maximize the usage of resources and prevent conflicts between users
 - Quantum computing integrated with HPC creates new constraints:
 - the exclusivity of resources
 - the bounded execution time of quantum algorithms in current systems
 - the indivisibility of a single shot resources cannot be preempted
 - Classical jobs are in the order of magnitude between seconds and days whereas quantum shot are several orders of magnitude shorter
 - Batch schedulers are not equipped to handle that

SW Integration for Hybrid Classical-Quantum Algorithms

REVISITING COMPUTING

Successful integration of a quantum accelerator into the HPC environment relies on the HPC user community learning to rethink their problems considering quantum resources:

- Rethinking workflows
 - Which part of the workflow can take benefit from quantum acceleration?
- Rethinking the use of direct solvers
 - Many problems in classical computing are using iterative solvers, but quantum algorithms behave more like direct solvers
- Rethinking numerical models
 - Including the underlying mathematical model

Abstraction layers, Interfaces & Standards

FUTURE HETEROGENEOUS HPC+QC SYSTEMS

Multiple Quantum Accelerators will be available. Need for standardization of interfaces.

FRAMEWORK INTERFACE

Allows quantum frameworks to target the quantum resource manager.

Quantum algorithm optimization moved below this layer. Reduces barrier for user engagement.

VENDOR INTERFACE

Exposes abstraction layers for the control of the QC hardware. Must support system management tasks for the resource manager. Likely needs to be upgraded to improve performance.

WHITEPAPER

Bringing quantum acceleration to

supercomputers

http://meetiqm.com/uploads/documents/ IQM_HPC-QC-Integration-Whitepaper.pdf

Martin Ruefenacht, Bruno G. Taketani, Pasi Lähteenmäki, Ville Bergholm, Dieter Kranzlmüller, Laura Schulz, Martin Schulz

Bringing quantum acceleration to supercomputers

MARTIN RUEFENACHT¹, BRUNO G. TAKETANI², PASI LÄHTEENMÄKI³, VILLE BERGHOLM³, DIETER KRANZLMÜLLER¹, LAURA SCHULZ¹, AND MARTIN SCHULZ^{1,4}

¹Leibniz Supercomputing Centre, Garching near München, Germany ²IQM, Nymphenburgerstr. 86, 80636 Munich, Germany ³IQM, Keilaranta 19, 02150 Espoo, Finland ⁴Technical University of Munich, Garching near München, Germany

Fast Lane to Quantum Advantage

IQM

Education and executive trainings

IQM Academy

- → <u>https://academy.meetiqm.com/</u>
- \rightarrow Free online resources to learn about quantum computing.
- → Interactive curriculum, tips & tricks for using IQM hardware, and much more.

Executive Masterclass

→ This masterclass will teach you a solid understanding of quantum computing vocabulary, use-cases and help you gain an understanding about quantum computing opportunities for your company

Workshop

Quantum Computing Certificate Workshop

- → Key concepts of quantum computing, the quantum computing landscape and get the chance to engage in hand s-on exercises.
- $\rightarrow~$ Experts from IQM and Atos will accompany you on your journey.

Technical Deep Dives

- → You have specific needs for your quantum computing journey?
- → Together with you we will assess the educational needs, create a custom learning path, and deliver engaging learning experiences that will fit the learning style of your company.

IQM Academy

Gain a thorough understanding of quantum computing and its applications.

- A free curriculum and learning platform for anyone
- Easy to pick up, no previous knowledge required
- Highly interactive and engaging

Start today on

https://academy.meetiqm.com/

IQM is exploring early applications

IQM is currently investigating several use-cases for advantage and co-design, organized in two work lines:

Machine Learning

Quantum Reinforcement Learning, Quantum Reservoir Computing

Application: Financial fraud detection

Our partners and clients: A financial institution and Multiverse

→ Develop a quantum-accelerated Al-based PoC for financial fraud detection problems Application: System/machine control and optimization

Our partners and clients: Siemens, Fraunhofer, and FAU

→ PoC for quantum reinforcement learning algorithm to find humanunderstandable control policy

Fermionic Simulation

Quantum Monte Carlo, Dynamical Mean Field Theory

Application: Battery optimization, transition metal oxides (TMO)

Our partners and clients: An automotive company and German Aerospace Center (DLR)

 PoC for battery toy model to study chemical properties of TMOs used as cathode materials Application: Metal-organic framework (MOF) simulation for carbon capture

Our partners and clients:

Unannounced collaboration with chemical research company (and energy company)

→ PoC study of interaction between CO2 and the constituents of the MOF

IQM is exploring early applications

IQM is currently investigating several use-cases for advantage and co-design, organized in two work lines:

Optimization

Quantum Approximate Optimization Algorithm

Application: Power plant outage scheduling

Our partners and clients: a national electric company

- → Investigation of quantum solutions to highly constrained problems
- → PoC scheduling problem solved with amplitude amplification
- → QAOA approach to be investigated

Application: Trajectory optimization Our partners and clients: a national contractor

→ QASIC approach for optimization (co-design)

Partial Differential Equations (PDE)

Variational quantum circuits

Application: Climate simulations Our partners and clients: Quanscient, DLR

- \rightarrow Perspective paper about the use of QC for climate research
- \rightarrow Speed-up PDE simulations, model tuning, analysis & evaluation