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Algorithm Implementation - QPCA Algorithm formalization

« Linear transformation of the original data into new
coordinate system

« Widely used in various fields, such as image processing,
biology and finance, with use cases such as Interest Rate

Risk specifically addressed through this work Implemented an end-to-end QPCA algorithm, providing a higher level of
generality than current literature, overcoming important limitations on
« Necessity to compute eigenvalues & eigenvectors of the the input domain.
INnput matrix The algorithm can be represented through the following blocks.
_nf-tho- / : ORAM maps the Calculation of Extraction of Reconstruction
Stqte of-the qrz‘ lzz‘eratum propose Qu.am‘um PCA algorzthm original input s o atri's of the final
wzth a potential z‘heoretz_cal exponentially faster execution rottris within the eigenvalues eigenvectors output matrix
time compared to classical model,. corresponding through the QPE  through using previous
quantum state. operator. Tomography. steps’ results.
Current literature does not provide a end-to-end generic ‘_ * _
implementation of QPCA algorithm. Reported examples are Input Matrix Output Matrix

based on specific and restricted matrix input domain.

Current literature provides algorithm description limited to the
computation of eigenvalues, without output reconstruction
methodology (extraction of principal components).

[1]: “S.Lloyd, M.Mohseni, P.Rebentrost. «Quantum principal component analysis», https.//doi.org/10.48550/arXiv.1307.0401”



Algorithm Implementation - QPCA steps

A high-level quantum algorithm with exponential advantage tor PCA ot low rank covariance matrices
was proposed by Lloyd et al

1. Preprocessing - Data Loading

A € RN XN input matrix
Gram-Schmidt decomposition

r matrix rank

N .
Sy k-th lar val
ha) = > AZJ| M) = § :ak g |ug) O singular value
=1 :1 u, k-th singular vector

2. Eigenvalues extraction — Phase Estimation

T

Reg.E |0) —/{H [ QFT?

0)7 Jp4) M 25 Zak Xe)” u) k)

Reg. M |¢4) —F e At @ T A=

3. Eigenvectors extraction — Tomography

Ak) is binary encoded within registers E by PE and can be easily reconstructed

u; ) cannot be straightforwardly decoded like its eigenvalue: Quantum State Vector Tomography is needed to read out its content 4



Algorithm Implementation - QPCA steps

3. Eigenvectors extraction — Tomography

Title: “I. Kerenidis and A. Prakash. <A Quantum Interior Point Method for LPs and SDPs». ACM Transactions on Quantum Computing, vol. 1, fasc. 1,
2020, https://dol.org/10.1145/3406306 ”

Algorithm 4.1 Vector state tomography algorithm.
Require: Access to a unitary U such that U [0) = [z) = ;¢4 @ |¢) and to its controlled version.

1. Amplitude estimation

(a) Measure N = 36%%” copies of |x) in the standard basis and obtain estimates p; =
where n; is the number of times outcome 7 is observed.

ng
N

(b) Store \/pi,i € [d] in QRAM data structure so that [p) = > ;.14 /Pili) can be
prepared efficiently.

2. Sign estimation

(a) Create N = 36’3%“” copies of the state \/Lﬁ 10) > ic(q i l2) + \% 1) 2 iciq v/Pi i) using
a control qubit.

(b) Apply a Hadamard gate on the first qubit of each copy of the state to obtain

%Zie[d][(ivz' + /i) 0,%) + (z; — /pi) |1,9)].

(c) Measure each copy in the standard basis and maintain counts n(b,%) of the number
of times outcome |b,%) is observed for b € 0, 1.

(d) Set o; =1 if n(0,7) > 0.4p; N and —1 otherwise.

3. Output the unit vector x with z; = 05./p;.

totalg -

total, -

total, -

totals -

totals -

totals

meas

|x)
o
-
e
-
0 -4 —
circuit-134
- ?
6 y O - y 2 v 3 Hv 5




Algorithm Implementation - QPCA steps

3. Eigenvectors extraction — Tomography

Title: “I. Kerenidis and A. Prakash. «A Quantum Interior Point Method for LPs and SDPs». ACM Transactions on Quantum Computing, vol. 1, fasc. 1,
2020, https://dol.org/10.1145/3406306 ”

Algorithm 4.1 Vector state tomography algorithm.
Require: Access to a unitary U such that U |0) = |z) = }_,c(q %i [¢) and to its controlled version.

1. Amplitude estimation

(a) Measure N = 36‘;%“[ copies of |z) in the standard basis and obtain estimates p; =
where n; is the number of times outcome 7 is observed.

ng
N

(b) Store /pi,i € [d] in QRAM data structure so that |p) = > ey v/Pili) can be
prepared efficiently.

2. Sign estimation

(a) Create N = 367}?” copies of the state % 10) D ieqq @i |9) + \% 1) 2 icqa) v/Pi |i) using
a control qubit.

(b) Apply a Hadamard gate on the first qubit of each copy of the state to obtain

%Eie[d][(wi + /i) [0,2) + (% — /Pi) [1,9)].

(c) Measure each copy in the standard basis and maintain counts n(b,%) of the number
of times outcome |b,%) is observed for b € 0, 1.

(d) Set o; =1 if n(0,7) > 0.4p; N and —1 otherwise.

3. Output the unit vector x with z; = 05./p;.

totalp - 0 —-

|
total, - R

|
total, - 2PE — -

|
totals - 3 —

|
total, -0 -4 —

circuit-134 i
totals -1 ' ?
meas 6 v 0 y 1l v 2 v 3 H 4 5
targety 0 0 i
target, 1 1
target; 2
op_U » E

targets 3 3 <
tar g e tA 4 4 01,0,0,0,0,0,0,0.173,0.141,0,0,01,0,0.1,0,0922, ...
targets 5

control_qubit — H —.
7




Algorithm Implementation - QPCA steps

4. Output reconstruction — Custom postprocessing

« 2x2 matrix with eigenvectors |uy) 1
encoded in one qubit. Our uk) = Zaz‘\i> = ao|0) + a1]1).
objective Is to reconstruct a0 and al. 1=0

« Therefore, we can express:
P ]uk>]uk> — b0’00> —+ b1‘01> -+ b2|10> -+ b3’11> —

CL(2)|OO> + a0a1|01> + a1a0|10> + CL%|11>

« After normalization, we can bring to common factor:

bo\0>(\0>+2—(1)\1>) +b3|1>(z_§\0>+|1>) {\/5_3(2—2) = \%—3 = Ja = Qg




Algorithm Experiments

We generated a 2x2 matrix with synthetic data validated by domain experts. The runs
were executed using ibm gasm_simulator and 2 qubits of resolution

A — 0.6507 0.2122

- 0.2122  0.3493 |
A1 =0.760 u; = 0.889 0.459 | 24000 1
A2 =0.240 uy = | —0.459 0.889 |

16000 -

Count

8000 -




Algorithm Experiments

We generated a 2x2 matrix with synthetic data validated by domain experts. The runs
were executed using ibm gasm_simulator and 2 qubits of resolution

A — 0.6507 0.2122

| 0.2122  0.3493
A1 =0.760 u; = | 0.889 0.459 | 240007
A2 =0.240 uy = | —0.459 0.889 | }
§ 16000 -
] 8000 -
A =075 u;=/[0.889 0452
A2=025 up=| —0439 0.888 :




Algorithm Complexity

& Qubits O Time

State Preparation*: 0(log(d?)) State Preparation: 0(d?'°9(2))
Phase Estimation: n qubit forzin resolution Phase Estimation: O(t2e 1d?109(2)
Sign Estimation: +1 control qubit Sign Estimation: 0(6~%t%*e 1d * log(d?))

* d matrix dimension
* §,& precision parameters that depend on the condition number

* [ time step

* V. Shende, S. Bullock and I. Markov, "Synthesis of quantum-logic circuits," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6, June 2006, doi: 10.1109/TCAD.2005.855930.
10



Future works

e Improve scalability and complexity, especially with respect to the crucial step of data loading

e Figuring out effective quantum thresholds methodologies for QPCA

An improved quantum principal component
analysis algorithm based on the quantum

singular threshold method A Low-Complexity Quantum Principal

Component Analysis Algorithm

Jie Lin ®° Wan-SuBao®® 2 &, Shuo Zhang ®®, Tan Li ®®, Xiang Wang ®°

Show more v

CHEN HE'" (Member, IEEE), JIAZHEN LI', WEIQI LIU'™, JINYE PENG',
AND Z. JANE WANG2" (Fellow, IEEE)

'School of Information Science and Technology, Northwest University, Xi'an 710069, China
“Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
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Thank you for your attention!

Emanuele Dri, Antonello Aita, Tommaso Fioravanti, Giulia Franco, Edoardo Giusto, Giacomo Ranieri, Davide Corbelletto, Bartolomeo Montrucchio,
“Towards an end-to-end approach for quantum principal component analysis” 2023 IEEE International Conference on Quantum Computing and
Engineering (OCE) doi.org/10.1109/QCE57702.2023.10175

GitHub Code Repository: github.com/Eagle-quantum/QuPCA
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Appendix

3. Eigenvectors extraction — Numerical example

« Considering a 2x2 input matrix with the following eigenvalues/eigenvectors

M=2,u; =[0.7071,0.7071] T A,=

« The output state [y, ) after the QPE is
[ Wi ) =140 M ug ) lug )+ A5 ) uy ) [uy )

Z00m

|1000)+ |1001)+ |1010)+ 11011)

—|10)®(— |OO)+ |01)+ |10)+ |11))

2

1 1
~10)(10) + [1)) +511)(10) + 1))

1
— =0.7071
V2

1, u, = [-0.7071,0.7071] ¥

C. He, J. Li, W. Liu, J. Peng, and Z. J. Wang, “A low-complexity quantum principal component analysis algorithm”
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Appendix

3. Eigenvectors extraction — Numerical example

« Considering a 2x2 input matrix with the following eigenvalues/eigenvectors

A,=2,u = [0.7071,0.7071] T A,=1,u, = [-0.7071,0.7071] T

« The output state [y, ) after the QPE is
[ Wi ) =140 M ug ) lug )+ A5 ) uy ) [uy )

Z00m

Quantum State Vector
|1000> + 3 |1001> "‘ [1010) + = |1011> Tomography to reconstruct
the state vector of a generic
=110) ® (— 100) + = |01) + |10) + = |11>) quantum state

2

1 1
~10)(10) + [1)) +511)(10) + 1))
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— =0.7071
\/E C. He, J. Li, W. Liu, J. Peng, and Z. J. Wang, “A low-complexity quantum principal component analysis algorithm”



Appendix
Addressed complex state vector generation to the QPE inability to represent non-integer eigenvalues.

QPE - Integer representation

Phase estimation algorithm outputs a superposition state of eigenvectors of the input matrix, with each eigenvector weighted by a phase factor
determined by the corresponding eigenvalue.

For non-integer eigenvalues, the phase factor cannot perfectly represent an integer multiple of 2", so the resulting superposition will have
complex coefficients.

The number of states in the superposition will be finite and determined by the precision of the phase estimation algorithm and the number of
qubits used to represent the phase.

O Real eigenvalue

0.75 Approximated
| eigenvalue

N

Phase is represented based on qubits used in the computation, qubit |
considering binary representation of non-integer values

—

{00} : 0(211) + o(ziz) =

oL 1) =
s 10130 (211) +1 (212) 025 " 0.125 0.375 0.625 0.875
X 1 (10}: 1(5)+0(5) =05
- = - {1131 1(55) +1(55) = 075 * , L . .
2 2 — Higher accuracy in eigenvalues representation is achievable through

OPE resolution increase
15



Appendix

Benchmark using real data comparing QPCA results on noiseless simulator for different values of resolution.

Resolution parameter has a strong influence on the accuracy of estimated eigenvalues and eigenvectors ,attecting

directly Quantum Phase Estimation calculation.
As resolution increases, the noise in the measurements attenuates, allowing peaks detection corresponding to

eigenvalues of the system.

OPE ( Resolution 5)

OPE ( Resolution 6 )

OPE ( Resolution 8)

ﬁ
f

J\\W

aaaaaaaaa

aaaaaaaaa

175 %

:0.0027

aaaaaaaaa

: 100 %

:0.0013
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Appendix

Detected peaks for noiseless and noisy executions are reported to visualize the differences and the impact
of quantum noise on 2x2 real matrices

OPE ( Noiseless Simulator )

OPE (Noisy Simulator )
a ,\
| |
/ |
\ H
Probability o [ k Probability \
| J\
| |
o
)k v
A Attt WHM,) — oo ”A‘A‘/\\/\/\W
: Eigenvalue : * . K R OhEigenvalue : * |
100 % 100 %
:0.90625, 0.09375 :0.90625, 0.96875
:0.0147 :0.0643
:0.1478 :1.3586
Findings

Results interpretation

Noisy simulator yields a significantly more jagged output compared to
the noiseless one, which certainly affects the algorithm's performance

Noise is not beneficial in situations where the number of resolution qubits
Is already sufficient for accurately estimating the eigenvalues

*Resolution 6
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