Towards an end-to-end approach for quantum principal component analysis

December $15^{\text {th }}, 2023$

AGENDA

Algorithm Implementation - QPCA Algorithm formalization

Problem statement PCA

- Linear transformation of the original data into new coordinate system
- Widely used in various fields, such as image processing, biology and finance, with use cases such as Interest Rate Risk specifically addressed through this work
- Necessity to compute eigenvalues \& eigenvectors of the input matrix

Literature OPCA

State-of-the-art literature propose Quantum PCA algorithm with a potential theoretical exponentially faster execution time compared to classical model ${ }_{[1]}$

Current literature does not provide a end-to-end generic implementation of QPCA algorithm. Reported examples are based on specific and restricted matrix input domain.

Current literature provides algorithm description limited to the computation of eigenvalues, without output reconstruction methodology (extraction of principal components).

Algorithm Implementation - QPCA steps

A high-level quantum algorithm with exponential advantage for PCA of low rank covariance matrices was proposed by Lloyd et al

1. Preprocessing - Data Loading

$$
\left|\psi_{A}\right\rangle=\sum_{i=1}^{N} \sum_{j=1}^{N} A_{i j}|i\rangle|j\rangle=\sum_{k=1}^{r} \sigma_{k}\left|u_{k}\right\rangle\left|u_{k}\right\rangle
$$

$$
\begin{aligned}
& A \in \mathbb{R}^{N X N} \text { input matrix } \\
& r \text { matrix rank } \\
& \sigma_{k} \text { k-th singular value } \\
& u_{k} \mathrm{k} \text {-th singular vector }
\end{aligned}
$$

2. Eigenvalues extraction - Phase Estimation

3. Eigenvectors extraction - Tomography

- $\left|\lambda_{k}\right\rangle$ is binary encoded within registers E by PE and can be easily reconstructed
- $\left|u_{k}\right\rangle$ cannot be straightforwardly decoded like its eigenvalue: Quantum State Vector Tomography is needed to read out its content

Algorithm Implementation - QPCA steps

3. Eigenvectors extraction - Tomography

Title: "I. Kerenidis and A. Prakash. «A Quantum Interior Point Method for LPs and SDPS». ACM Transactions on Quantum Computing, vol. 1, fasc. 1, 2020, https://doi.org/10.1145/3406306"

Algorithm 4.1 Vector state tomography algorithm.

Require: Access to a unitary U such that $U|0\rangle=|x\rangle=\sum_{i \in[d]} x_{i}|i\rangle$ and to its controlled version.

1. Amplitude estimation
(a) Measure $N=\frac{36 d \ln d}{\delta^{2}}$ copies of $|x\rangle$ in the standard basis and obtain estimates $p_{i}=\frac{n_{i}}{N}$ where n_{i} is the number of times outcome i is observed.
(b) Store $\sqrt{p_{i}}, i \in[d]$ in QRAM data structure so that $|p\rangle=\sum_{i \in[d]} \sqrt{p_{i}}|i\rangle$ can be prepared efficiently.
2. Sign estimation
(a) Create $N=\frac{36 n \ln n}{\delta^{2}}$ copies of the state $\frac{1}{\sqrt{2}}|0\rangle \sum_{i \in[d]} x_{i}|i\rangle+\frac{1}{\sqrt{2}}|1\rangle \sum_{i \in[d]} \sqrt{p_{i}}|i\rangle$ using a control qubit.
(b) Apply a Hadamard gate on the first qubit of each copy of the state to obtain $\frac{1}{2} \sum_{i \in[d]}\left[\left(x_{i}+\sqrt{p_{i}}\right)|0, i\rangle+\left(x_{i}-\sqrt{p_{i}}\right)|1, i\rangle\right]$.
(c) Measure each copy in the standard basis and maintain counts $n(b, i)$ of the number of times outcome $|b, i\rangle$ is observed for $b \in 0,1$.
(d) Set $\sigma_{i}=1$ if $n(0, i)>0.4 p_{i} N$ and -1 otherwise.
3. Output the unit vector \widetilde{x} with $\widetilde{x}_{i}=\sigma_{i} \sqrt{p_{i}}$.

Algorithm Implementation - QPCA steps

3. Eigenvectors extraction - Tomography

Title: "I. Kerenidis and A. Prakash. «A Quantum Interior Point Method for LPs and SDPs». ACM Transactions on Quantum Computing, vol. 1, fasc. 1, 2020, https://doi.org/10.1145/3406306"

Algorithm 4.1 Vector state tomography algorithm.

Require: Access to a unitary U such that $U|0\rangle=|x\rangle=\sum_{i \in[d]} x_{i}|i\rangle$ and to its controlled version.

1. Amplitude estimation
(a) Measure $N=\frac{36 d \ln d}{\delta^{2}}$ copies of $|x\rangle$ in the standard basis and obtain estimates $p_{i}=\frac{n_{i}}{N}$ where n_{i} is the number of times outcome i is observed.
(b) Store $\sqrt{p_{i}}, i \in[d]$ in QRAM data structure so that $|p\rangle=\sum_{i \in[d]} \sqrt{p_{i}}|i\rangle$ can be prepared efficiently.
2. Sign estimation
(a) Create $N=\frac{36 n \ln n}{\delta^{2}}$ copies of the state $\frac{1}{\sqrt{2}}|0\rangle \sum_{i \in[d]} x_{i}|i\rangle+\frac{1}{\sqrt{2}}|1\rangle \sum_{i \in[d]} \sqrt{p_{i}}|i\rangle$ using a control qubit.
(b) Apply a Hadamard gate on the first qubit of each copy of the state to obtain $\frac{1}{2} \sum_{i \in[d]}\left[\left(x_{i}+\sqrt{p_{i}}\right)|0, i\rangle+\left(x_{i}-\sqrt{p_{i}}\right)|1, i\rangle\right]$.
(c) Measure each copy in the standard basis and maintain counts $n(b, i)$ of the number of times outcome $|b, i\rangle$ is observed for $b \in 0,1$.
(d) Set $\sigma_{i}=1$ if $n(0, i)>0.4 p_{i} N$ and -1 otherwise.
$|x\rangle$

3. Output the unit vector \widetilde{x} with $\widetilde{x}_{i}=\sigma_{i} \sqrt{p_{i}}$.

Algorithm Implementation - QPCA steps

4. Output reconstruction - Custom postprocessing

- 2×2 matrix with eigenvectors $\left|u_{k}\right\rangle$ encoded in one qubit. Our objective is to reconstruct a0 and a1.

$$
\left|u_{k}\right\rangle=\sum_{i=0}^{1} a_{i}|i\rangle=a_{0}|0\rangle+a_{1}|1\rangle .
$$

- Therefore, we can express:

$$
\begin{gathered}
\left|u_{k}\right\rangle\left|u_{k}\right\rangle=b_{0}|00\rangle+b_{1}|01\rangle+b_{2}|10\rangle+b_{3}|11\rangle= \\
a_{0}^{2}|00\rangle+a_{0} a_{1}|01\rangle+a_{1} a_{0}|10\rangle+a_{1}^{2}|11\rangle .
\end{gathered}
$$

- After normalization, we can bring to common factor:

$$
b_{0}|0\rangle\left(|0\rangle+\frac{b_{1}}{b_{0}}|1\rangle\right)+b_{3}|1\rangle\left(\frac{b_{2}}{b_{3}}|0\rangle+|1\rangle\right) \quad\left\{\begin{array}{l}
\sqrt{b_{3}}\left(\frac{b_{2}}{b_{3}}\right)=\frac{b_{2}}{\sqrt{b_{3}}}=\frac{a_{1} a_{0}}{\sqrt{a_{1}^{2}}}=a_{0} \\
\sqrt{b_{3}}=a_{1}
\end{array}\right.
$$

Algorithm Experiments

We generated a 2×2 matrix with synthetic data validated by domain experts. The runs were executed using ibm qasm_simulator and 2 qubits of resolution

$$
\begin{gathered}
A=\left[\begin{array}{ll}
0.6507 & 0.2122 \\
0.2122 & 0.3493
\end{array}\right] \\
\lambda_{1}=0.760 \quad u_{1}=\left[\begin{array}{ll}
0.889 & 0.459
\end{array}\right] \\
\lambda_{2}=0.240 \quad u_{2}=\left[\begin{array}{ll}
-0.459 & 0.889
\end{array}\right]
\end{gathered}
$$

Algorithm Experiments

We generated a 2×2 matrix with synthetic data validated by domain experts. The runs were executed using ibm qasm_simulator and 2 qubits of resolution

$$
\left.\begin{array}{c}
A=\left[\begin{array}{ll}
0.6507 & 0.2122 \\
0.2122 & 0.3493
\end{array}\right] \\
\lambda_{1}=0.760 \quad u_{1}=\left[\begin{array}{ll}
0.889 & 0.459
\end{array}\right] \\
\lambda_{2}=0.240
\end{array} u_{2}=\left[\begin{array}{ll}
-0.459 & 0.889
\end{array}\right]\right] \text {, } \begin{aligned}
& \text { (}
\end{aligned}
$$

Algorithm Complexity

- d matrix dimension
- δ, ε precision parameters that depend on the condition number
- t time step
* V. Shende, S. Bullock and I. Markov, "Synthesis of quantum-logic circuits," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6, June 2006, doi: 10.1109/TCAD.2005.855930.

Future works

- Improve scalability and complexity, especially with respect to the crucial step of data loading
- Figuring out effective quantum thresholds methodologies for QPCA

An improved quantum principal component analysis algorithm based on the quantum singular threshold method

Show more \vee

A Low-Complexity Quantum Principal Component Analysis Algorithm

CHEN HE ${ }^{1 ®}$ (Member, IEEE), JIAZHEN LI' ${ }^{1}$ WEIQI LIU ${ }^{1 ®}$, JINYE PENG ${ }^{1}$, AND Z. JANE WANG ${ }^{\text {º }}$ (Fellow, IEEE)
${ }^{1}$ School of Information Science and Technology, Northwest University, Xi'an 710069, China
${ }^{2}$ Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Thank you for your attention!

Appendix

3. Eigenvectors extraction - Numerical example

- Considering a 2×2 input matrix with the following eigenvalues/eigenvectors

$$
\lambda_{1}=2, u_{1}=[0.7071,0.7071]^{T} \quad \lambda_{2}=1, u_{2}=[-0.7071,0.7071]^{T}
$$

- The output state $\left|\psi_{A}^{\prime}\right\rangle$ after the QPE is

$$
\begin{aligned}
& \left|\psi_{A}^{\prime}\right\rangle=\left|\lambda_{1}\right\rangle\left|u_{1}\right\rangle\left|u_{1}\right\rangle+\left|\lambda_{2}\right\rangle\left|u_{2}\right\rangle\left|u_{2}\right\rangle \\
& \left.\left.=\frac{1}{2}|\underline{10}\rangle\right\rangle \otimes\left(\frac{1}{2}|\underline{1001}|+\frac{1}{2}|\underline{10} 10\rangle+\frac{1}{2}\left|\underline{1011\rangle}+\frac{1}{2}\right| 01\right\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle\right) \\
& \frac{1}{2}|0\rangle(|0\rangle+|1\rangle)+\frac{1}{2}|1\rangle(|0\rangle+|1\rangle)
\end{aligned}
$$

$$
\frac{1}{\sqrt{2}}=0.7071
$$

Appendix

3. Eigenvectors extraction - Numerical example

- Considering a 2×2 input matrix with the following eigenvalues/eigenvectors

$$
\lambda_{1}=2, u_{1}=[0.7071,0.7071]^{T} \quad \lambda_{2}=1, u_{2}=[-0.7071,0.7071]^{T}
$$

- The output state $\left|\psi_{A}^{\prime}\right\rangle$ after the QPE is

$$
\begin{aligned}
& \left|\psi_{A}^{\prime}\right\rangle=\left|\lambda_{1}\right\rangle\left|u_{1}\right\rangle\left|u_{1}\right\rangle+\left|\lambda_{2}\right\rangle\left|u_{2}\right\rangle\left|u_{2}\right\rangle \\
& \left.=\frac{10}{10}\right\rangle \otimes\left(\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle\right) \\
& \\
& \frac{1}{2}|0\rangle(|0\rangle+|1\rangle)+\frac{1}{2}|1\rangle(|0\rangle+|1\rangle) \\
& \\
& \\
& \frac{1}{2}=0.7071
\end{aligned} \quad \begin{aligned}
& \text { Quantum State Vector } \\
& \text { Tomography to reconstruct } \\
& \text { the state vector of a generic } \\
& \text { quantum state }
\end{aligned}
$$

Appendix

Addressed complex state vector generation to the QPE inability to represent non-integer eigenvalues.

QPE - Integer representation

Phase estimation algorithm outputs a superposition state of eigenvectors of the input matrix, with each eigenvector weighted by a phase factor determined by the corresponding eigenvalue.

For non-integer eigenvalues, the phase factor cannot perfectly represent an integer multiple of $\mathbf{2}^{\boldsymbol{n}}$, so the resulting superposition will have complex coefficients.

The number of states in the superposition will be finite and determined by the precision of the phase estimation algorithm and the number of qubits used to represent the phase.

Phase is represented based on qubits used in the computation, considering binary representation of non-integer values

Higher accuracy in eigenvalues representation is achievable through QPE resolution increase

Appendix

Benchmark using real data comparing QPCA results on noiseless simulator for different values of resolution.

Resolution parameter has a strong influence on the accuracy of estimated eigenvalues and eigenvectors ,affecting directly Quantum Phase Estimation calculation.
As resolution increases, the noise in the measurements attenuates, allowing peaks detection corresponding to eigenvalues of the system.

Percentage of Eigenvalues estimated: 50%
Eigenvalues estimation mean error (L2) : 0.0059

Percentage of Eigenvalues estimated: 75 \%
Eigenvalues estimation mean error (L2) : 0.0027

Percentage of Eigenvalues estimated : 100%
Eigenvalues estimation mean error (L2) : 0.0018

Appendix

Detected peaks for noiseless and noisy executions are reported to visualize the differences and the impact of quantum noise on 2×2 real matrices

Findings

- Noisy simulator yields a significantly more jagged output compared to the noiseless one, which certainly affects the algorithm's performance

QPE (Noisy Simulator)

Percentage of Eigenvalues estimated : 100 \%
Eigenvalues estimated : 0.90625, 0.96875
First eigenvector estimation mean error (L2-norm) : 0.0643
Second eigenvector estimation mean error (L2-norm) : 1.3586

Results interpretation

- Noise is not beneficial in situations where the number of resolution qubits is already sufficient for accurately estimating the eigenvalues

