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Literature QPCA 

Implemented QPCA

Preprocessing

Input Matrix Output Matrix

Eigenvalues
extraction

Eigenvectors
extraction

Output
reconstruction

State-of-the-art literature propose Quantum PCA algorithm
with a potential theoretical exponentially faster execution
time compared to classical model[1].

• Linear transformation of the original data into new 
coordinate system

• Widely used in various fields, such as image processing, 
biology and finance, with use cases such as Interest Rate 
Risk specifically addressed through this work

• Necessity to compute eigenvalues & eigenvectors of the 
input matrix

Problem statement  PCA 

Current literature does not provide a end-to-end generic
implementation of QPCA algorithm. Reported examples are 
based on specific and restricted matrix input domain. 

Current literature provides algorithm description limited to the 
computation of eigenvalues, without output reconstruction
methodology (extraction of principal components).

Implemented an end-to-end QPCA algorithm, providing a higher level of 
generality than current literature, overcoming important limitations on 
the input domain. 
The algorithm can be represented through the following blocks.

QRAM maps the 
original input 
matrix within the 
corresponding 
quantum state.

Calculation of 
matrix’s
eigenvalues
through the QPE 
operator.

Extraction of 
matrix’s
eigenvectors
through 
Tomography.

Reconstruction
of the final
output matrix 
using previous
steps’ results. 

[1] : “S.Lloyd, M.Mohseni, P.Rebentrost. «Quantum principal component analysis», https://doi.org/10.48550/arXiv.1307.0401”
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A high-level quantum algorithm with exponential advantage for PCA of low rank covariance matrices 
was proposed by Lloyd et al

1. Preprocessing - Data Loading

2. Eigenvalues extraction – Phase Estimation

𝐴 ∈ ℝ! " ! input matrix

𝜎# k-th singular value

𝑢# k-th singular vector

𝑟 matrix rank
Gram-Schmidt decomposition

3. Eigenvectors extraction – Tomography

• !"𝜆!  is binary encoded within registers E by PE and can be easily reconstructed
 
• !"𝑢!  cannot be straightforwardly decoded like its eigenvalue: Quantum State Vector Tomography is needed to read out its content
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3. Eigenvectors extraction – Tomography
Title: “I. Kerenidis and A. Prakash. «A Quantum Interior Point Method for LPs and SDPs». ACM Transactions on Quantum Computing, vol. 1, fasc. 1, 
2020, https://doi.org/10.1145/3406306 ” | ⟩𝑥
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3. Eigenvectors extraction – Tomography
Title: “I. Kerenidis and A. Prakash. «A Quantum Interior Point Method for LPs and SDPs». ACM Transactions on Quantum Computing, vol. 1, fasc. 1, 
2020, https://doi.org/10.1145/3406306 ” | ⟩𝑥
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4. Output reconstruction – Custom postprocessing

• 2x2 matrix with eigenvectors
encoded in one qubit. Our
objective is to reconstruct a0 and a1. 

| ⟩𝑢!

• Therefore, we can express: 

• After normalization, we can bring to common factor: 
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We generated a 2x2 matrix with synthetic data validated by domain experts. The runs 
were executed using ibm qasm_simulator and 2 qubits of resolution
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We generated a 2x2 matrix with synthetic data validated by domain experts. The runs 
were executed using ibm qasm_simulator and 2 qubits of resolution
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Algorithm Complexity

Time

State Preparation*: 𝑶(𝒍𝒐𝒈 𝒅𝟐 ) State Preparation: 𝑶(𝒅𝟐𝒍𝒐𝒈(𝟐))

Phase Estimation: 𝑶(𝒕𝟐𝝐(𝟏𝒅𝟐𝒍𝒐𝒈 𝟐 )

Sign Estimation: 𝑶(𝜹(𝟐𝒕𝟐𝝐(𝟏𝒅 ∗ 𝒍𝒐𝒈 𝒅𝟐 )

* V. Shende, S. Bullock and I. Markov, "Synthesis of quantum-logic circuits," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6, June 2006, doi: 10.1109/TCAD.2005.855930.

Qubits

Phase Estimation: 𝐧 𝐪𝐮𝐛𝐢𝐭 𝐟𝐨𝒓 𝟏
𝟐𝒏
𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏

Sign Estimation: +𝟏 𝒄𝒐𝒏𝒕𝒓𝒐𝒍 𝒒𝒖𝒃𝒊𝒕

• 𝑑 matrix dimension

• 𝛿,𝜀 precision parameters that depend on the condition number

• 𝑡 time step 
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Future works

● Improve scalability and complexity, especially with respect to the crucial step of data loading

● Figuring out effective quantum thresholds methodologies for QPCA
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Thank you for your attention!

Emanuele Dri, Antonello Aita, Tommaso Fioravanti, Giulia Franco, Edoardo Giusto, Giacomo Ranieri, Davide Corbelletto, Bartolomeo Montrucchio, 
“Towards an end-to-end approach for quantum principal component analysis” 2023 IEEE International Conference on Quantum Computing and 
Engineering (QCE) doi.org/10.1109/QCE57702.2023.10175

github.com/Eagle-quantum/QuPCAGitHub Code Repository:

http://doi.org/10.1109/QCE57702.2023.10175
https://github.com/Eagle-quantum/QuPCA
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• Considering a 2x2 input matrix with the following eigenvalues/eigenvectors

• The output state           after the QPE is  |𝜓"# ⟩

3. Eigenvectors extraction – Numerical example

C. He, J. Li, W. Liu, J. Peng, and Z. J. Wang, “A low-complexity quantum principal component analysis algorithm” 
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Quantum State Vector 
Tomography to reconstruct 
the state vector of a generic 
quantum state

𝜆$= 2, 𝑢$ = 0.7071, 0.7071 & 𝜆%= 1, 𝑢% = −0.7071, 0.7071 &
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Addressed complex state vector generation to the QPE inability to represent non-integer eigenvalues.

Phase estimation algorithm outputs a superposition state of eigenvectors of the input matrix, with each eigenvector weighted by a phase factor
determined by the corresponding eigenvalue. 

For non-integer eigenvalues, the phase factor cannot perfectly represent an integer multiple of 𝟐𝒏, so the resulting superposition will have
complex coefficients. 

The number of states in the superposition will be finite and determined by the precision of the phase estimation algorithm and the number of 
qubits used to represent the phase.

QPE - Integer representation 

Eigenvalue representation example: 2 qubit resolution

*
+!

1
2!

𝑞! 𝑞" • {00} : 0 "
##

+ 0 "
#$

= 0

• {01} : 0 "
##

+ 1 "
#$

= 0.25

• {10} : 1 "
##

+ 0 "
#$

= 0.5

• {11} : 1 "
## + 1 "

#$ = 0.75

Phase is represented based on qubits used in the computation, 
considering binary representation of non-integer values

Higher accuracy in eigenvalues representation is achievable through 
QPE resolution increase

0 0.25 0.75

0.125 0.375

0.5

0.625

0.623 Real eigenvalue

Approximated
eigenvalue

0.875

2 
qubit

3 
qubit
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Resolution parameter has a strong influence on the accuracy of estimated eigenvalues and eigenvectors ,affecting 
directly Quantum Phase Estimation calculation. 
As resolution increases, the noise in the measurements attenuates, allowing peaks detection corresponding to 
eigenvalues of the system.

Benchmark using real data comparing QPCA results on noiseless simulator for different values of resolution.

QPE ( Resolution 5 ) QPE ( Resolution 6 ) QPE ( Resolution 8 )

Percentage of Eigenvalues estimated : 50 %

Eigenvalues estimation mean error ( L2 ) : 0.0059

Percentage of Eigenvalues estimated : 75 %

Eigenvalues estimation mean error ( L2 ) : 0.0027

Percentage of Eigenvalues estimated : 100 %

Eigenvalues estimation mean error ( L2 ) : 0.0018

Appendix
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Detected peaks for noiseless and noisy executions are reported to visualize the differences and the impact 
of quantum noise on 2x2 real matrices

QPE ( Noiseless Simulator ) QPE (Noisy Simulator )

*Resolution 6

• Noise is not beneficial in situations where the number of resolution qubits
is already sufficient for accurately estimating the eigenvalues

Percentage of Eigenvalues estimated : 100 %

Eigenvalues estimated : 0.90625, 0.09375

First eigenvector estimation mean error ( L2-norm ) : 0.0147

Second eigenvector estimation mean error ( L2-norm ) : 0.1478

Percentage of Eigenvalues estimated : 100 %

Eigenvalues estimated : 0.90625, 0.96875

First eigenvector estimation mean error ( L2-norm ) : 0.0643

Second eigenvector estimation mean error ( L2-norm ) : 1.3586

Findings

• Noisy simulator yields a significantly more jagged output compared to 
the noiseless one, which certainly affects the algorithm's performance 

Results interpretation

Eigenvalue

Probability

Eigenvalue

Probability
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