

Towards a High Performance Hybrid Computing

Julien Mellaerts Quantum Computing Consultant 14/12/2023

© Eviden SAS - Confidential - Commercial in confidence

EVIDEN

Index

o Qaptiva™

02 NISQ QPUs into an HPC center

⁰³ Towards a High Performance Hybrid Computing (HPHC) Framework

01 QaptivaTM

A new strategy to adapt to a dynamic market shift

From learning Quantum Computing to <u>building real-world QC applications</u>

Qaptiva[™] ID card

Qaptiva

Scalable solutions for quantum computing programming, emulation, simulation, and hybridization.

EVIDEN

Qaptiva™ Hardware - 800 series

Classical hardware appliances

Compute appliance for the NISQ era

Large-memory server

Optionally with GPUs

Qaptiva[™] Full stack included

Up to 16 sockets and 32TB of memory

Qaptiva[™] 802 2 sockets 2 TB memory

Qaptiva[™] 804 4 sockets 4 TB memory Qaptiva[™] 808 8 sockets 8 TB memory Qaptiva[™] 816 16 sockets 32 TB memory

Qaptiva[™] Access Server

Front-end server to orchestrate quantum resources and enable HPC and quantum hybridization

It enables the integration of any quantum processing unit (QPU) and emulator into the high-performance computing (HPC) infrastructure.

- Real scheduling of QPUs with SLURM
- Scale-out numerical simulation (MPI + GPU)
- Used in several HPC-QC pilots:
 - HPC-QS by EuroHPC
 - HQI in France
 - Qsolid in Germany

EVIDEN

Qaptiva[™] Application platform

© Eviden SAS - Confidential - Commercial in confidence

Qaptiva[™] Q-Pragma C++ Framework for FTQC Computing

It is a powerful tool for HPC centers that helps optimize programs and continuously accelerate classical

supercomputers.

Q-Pragma allows the creation of algorithms that can integrate quantum routines into existing HPC

applications. HPC centers can use HPC-Quantum hybridization to enhance current applications,

integrate C++ programs, and enable heterogeneous computing.

First deployment in HQI project, in collaboration with Genci & CEA

Qaptiva[™] myQLM - Python Package

Test and develop quantum algorithms on any device

- Freeware Python package with interoperability connectors that provides basic programming features, and serves as a rich client to Qaptiva[™] access
- It allows for easy integration and collaboration with other tools and systems, making it a versatile and accessible solution for working with quantum computing applications.
- Available for download

Qaptiva[™] Partner Ecosystem

Software & Consulting Partners

EVIDEN

W ith its strong partnerships and joint go-to-market strategies, Eviden is realizing its commitment to offering end-to-end solutions.

EVIDEN

 $\ensuremath{\mathbb C}$ Eviden SAS -Confidential-Commercial in confidence

Qaptiva ${}^{\rm TM}$ Partner Ecosystem

Expanding offerings and capabilities to deliver more value

IQM Photonics Superconducting

•

٠

٠

2 to 12 optical qubits

Co-design approach or ready-made hardware

Available now on Qaptiva[™] as a Service

- Hosted by Quandela
- VQE example
- 10000 shots 20 seconds execution – few euros to run

Gate-based paradigm

World-class error rates

Co-design approach or ready-made hardware

Use-case-specific hardware design

- As a Service in 2024
- Plan to be hosted by Eviden
- 5 qubits capabilities

Neutral atoms

PASQAL

Analog and gate-based computing paradigm

Up to 200 qubits

Deep integration with myQLM tools

CAT Qubits

ALICE & BOB

Innovative hardwareefficient design will reduce the hardware requirements for a fault-tolerant quantum computer

Eviden Quantum Computing

Client success

+36 Appliance customers

EVIDEN

02 NISQ QPUs into an HPC center

Noisy Intermediate Scale Quantum **Defining NISQ**

NISQ (Noisy Intermediate Scale Quantum)

- \rightarrow ~hundreds of noisy qubits
- \rightarrow ~hundreds instructions

Programming model: Control flow managed by CPU Quantum circuits created by CPU Repeated evaluation of circuit by QPU Limited width N

Time Job CPU QPU

 \Rightarrow QPU online slave of CPU

Integrating NISQ QPUs into an HPC datacenter

• EuroHPC projectHPC-QS, France HQI

Qaptiva & Hybrid computation stacks

The computation chain

Qaptiva defines 3 types of services:

- Generates inputs (i.e. quantum jobs)
- (Classically) pre / post processes quantum jobs
- Executes a quantum job, can either be:
 - An emulator (running on CPU, GPU...)
 - A QPU

Qaptiva & Hybrid computation stacks

The computation chain

A computation chains can be built by stacking services.

A chain is composed of:

- A list of quantum jobs or a strategy to build jobs
- One or more plugins (Optional)
- One QPU

Qaptiva & Hybrid computation stacks

The computation chain

A computation chains can be built by stacking services.

A chain is composed of:

- A list of quantum jobs or a strategy to build jobs
- One or more plugins (Optional)
- One QPU

Plugins can resubm itquantum jobs

Accessing hybrid cluster remotely

Qaptiva Power Access

EVIDEN

Accessing hybrid cluster remotely

Qaptiva Power Access

eviden

Accessing hybrid cluster remotely

Example of Qaptiva python code

Scheduling quantum jobs

High-level scheduling and QPU idleness

Scheduling quantum jobs

High/Low-level scheduling

Scheduling quantum jobs

High/Low-level scheduling

03 Towards a High Performance Hybrid Computing (HPHC) Framework High Performance Hybrid Computing **Defining HPHC**

HPHC (High Performance Hybrid Computing)

- \rightarrow ~thousands of <code>perfectlogicalqubits</code> (with QEC)
- → Multi-QPUs
- \rightarrow Use of QPUs in HPC centers

Entire application, composed of classical and quantum parts

HPC programming languages (compatibility with C, C++, Fortran, etc.)

What will an HPHC program look like?

Architecture of HPHC quantum
devices ?

eviden

QPUs will have classical capabilities

Architecture of an hybrid quantum device

QPUs willbe composed of:

- A *controller* receiving instructions and scheduling them on the *quantum part*
- A quantum part being the core of the QPU

EVIDEN

Quantum capabilities

Defining quantum specific operations

Access to quantum memory

Safe uncomputation should be used to reset a register

EVIDEN

Q-Pragma - A C++ Framework for LSQ computing

A framework composed of a library and some pragmas

Q-Pragma C++ framework:

Pragmas to extend C++ language, to add:

- Hybridization capabilities
- Quantum capabilites

A library providing:

• Quantum types

...

• Quantum routines

<u>Q-Praqma example</u>

```
#pragma quantum routine
void bell pair(const qbool & qb0,
               const qbool & qb1) {
    H(qb0);
    CNOT(qb0, qb1);
}
int main() {
    ···· ;
    ::bell_pair(qb1, qb2);
    ::bell_pair.dag(qb1, qb2);
    ::bell_pair.ctrl(qc, qb1, qb2);
}
```

Perspectives for Q-Pragma

- Open source specification
- Federate a comm unity from HPC
- Continue co-design, guided by HPC use cases

EVIDEN

Thank you!

For more information, please contact us: julien.mellaerts@eviden.com

Confidential information owned by Eviden SAS, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Eviden SAS.

© Eviden SAS -Confidential-Commercial in confidence