

ENGINEERING THE QUANTUM COMPUTER

HPCQC Conference, Cineca

14.12.2023 | DAVID DIVINCENZO

Mitglied der Helmholtz-Gemeinschaft

Back in 1959...

....When we get to the very, very small world---say circuits of seven atoms---we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like *nothing* on a large scale, for they satisfy the laws of quantum mechanics. So, as we go down and fiddle around with the atoms down there, we are working with different laws, and we can expect to do different things. We can manufacture in different ways. We can use, not just circuits, but some system involving the quantized energy levels, or the interactions of quantized spins, etc.

From "There's Plenty of Room at the Bottom", Lecture by Richard Feynman at American Physical Society meeting in 1959.

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

about what the computer was, we can say: Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws. Or we can turn the other way and say: Let the computer still be the same kind that we thought of before—a logical, universal automaton; can we imitate this situation? And I'm going to separate my talk here, for it branches into two parts.

4. QUANTUM COMPUTERS—UNIVERSAL QUANTUM SIMULATORS

Mitglied der Helmhol Mitglied der Helmhol

A. Holevo, c. 1975: Mitglied der Helmholtz-Gemeinschaft quantum channels

Rolf Landauer, IBM, c. 1960 "Information is Physical"

PRATINGA OUCLOATERING модели репликации, при разворачивании спирали часть хромосомы должна вращаться со скоростью, не меньшей 125 оборотов в секунду. Параллельно должна происходить сложная сеть безошибочных биохимических превращений.

Возможно, для прогресса в понимании таких явлений нам недостает математической теории квантовых автоматов. Такие объекты могли бы показать нам математические модели детерминированных процессов с совершенно непривычными свойствами. Одна из причин этого в том, что квантовое пространство состояний обладает гораздо большей емкостью, чем классическое: там, где в классике имеется N

дискретных состояний, в квантовой теори зицию, имеется с ^N планковских ячеек. П систем их числа состояний N1 и N2 пе варианте получается с N1 N2.

Эти грубые подсчеты показывают гора сложность квантового поведения системь ческой имитацией. В частности, из-за деления системы на элементы состояние рассматриваться многими способами каз ных виртуальных классических автомато тельным подсчетом в конце работы [17]. расчета молекулы метана требуется про сеток в 1042 точках. Если считать, что в нить всего 10 элементарных операций, числения производятся при сверхнизкой т то и при этом расчет молекулы метана п гию, производимую на Земле примерно :

о, производимую на Земле примерно . Первая трудность при проведении этой программы состоит в вы-Исрвая трудность при проведении этой программы и физическими Y. Manin, с. 1980 боре правильного баланса между математическими и физическими принципами. Квантовый автомат должен быть абстрактным: его математическая модель должна использовать лишь самые общие квантовые принципы, не предрешая физических реализаций. Тогда модель эволюции есть унитарное вращение в конечномерном гильбертовом пространстве, а модель виртуального разделения на подсистемы отвечает разложению пространства в тензорное произведение. Где-то в этой чает разложению пространства в тензорное простовное по тради- mentions guantum картине должно найти место взаимодействие, описываемое по тради- mentions for schungszentrum ции эрмитовыми операторами и вероятностями.

Outline

- The nature of qubits/quantum algorithms
- Materials and devices for a quantum computer
 - (Solid state perspective)
- Error correction and fault tolerance
- Strategies for 2D layouts for qubits
- Measurement, Isolation, Amplification
- The full system view

Q POPULAR SCIENCE

TECHNOLOGY - ENVIRONMENT - DIY - HEALTH - GEAR - NEWSLETTER SIGN-UP ME

In photos: Journey to the center of a quantum computer

A fantastic voyage into the cold inner workings of a mystical modern machine.

BY CHARLOTTE HU | PUBLISHED SEP 7, 2022 9:30 AM EDT

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmh

Η

Torsenan₆52entrum

Mitglied der Helmh

Mitglied der Helmh

Scaling will require SWAP-C (size/weight/power/cost)

An IBM engineer working on the custom-built dilution refrigerator casing for a single QPU

Google rendering of a planned million-physicalqubit system

lonQ ion trap and vacuum chamber in a single, minuscule package.

Superconductor Error Correction overhead: 1,000 – 100,000

Ion Trap Error Correction overhead: 10 – 100

Development Roadmap

	2016-2019 🔹	2020 💿	2021 🛛	2022 💿	2023 💿	2024	2025	2026	2027	2028	2029	2033+
	Run quantum circuits on the IBM Quantum Platform	Release multi- dimensional readmap publicly with initial arm focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serverless and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modulanty	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow IOK gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000's of logical qubits unlocking the full power of quantum computing
Data Scientist						Platform						
						Code assistant 🔅	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Researchers					Middleware							
					Quantum 🛛 👻 Serverkeus	Transpiller Service 🔞	Response Management	Circuit Kultling x P	Intelligent Orchestration			Circuit libraries
Quantum			Şiskit Runtime									
- maioai	18M Quantum Experience	0	сизиз 🥥	Dynamic circuits 🛛 🥥	Execution Modes 🧔	Heron (SK) 🛛 🕲	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (100M)	Blue Jay (1B)
	Canary Albatross Penguin Prototype Sigubits 16 gabits 20 gabits 63 gubits	Falcon Benchmarking 27 qubra	۰	Eagle Benchmarking 127 qubits	6	Sk gatos 133 quibits Classical modular	Ein on Anngeston Sik gatos 156 qubits Quantum modular	7.5k gates 156 qubits Quantum modular	10k gates 156 qubits Quantum modular	15k gates 15k gates 155 gubits Quantum modular	100M gates 200 gutes Stror corrected modularity	19 gates 2000 quiota Error conscted modularity

Innovation Roadmap

IBM Quantum

nature

Received: 21 October 2023

Accelerated Article Preview

Logical quantum processor based on reconfigurable atom arrays

A new, strong contender: 280-qubit Rb atom device, Harvard University

Good at parallel gate operations

Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li, Hengyun Zhou, Tom Manovitz, Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik Hangleiter,

Single-spin quantum dots: Also a route to a scaleable processor?

Scale up has begun! 16-qubit IBM cloud quantum computer

Metalized structure on Si chip

(all resemblance to normal chips ends there.)

Qubit possibilities are superconducting/SQUID type single electron type

Mitglied der Heimholtz-Gemeinschaft C. IBW

T=0.02 K

"Standard" scheme for multi-qubit/resonator layout

- Qubits (green) coupled via high-Q superconducting bus resonators (straight gray) –
- Each qubit coupled to readout resonator (meander gray)
- Sufficient connectivity for error correction code scheme
- Every qubit has a number of controller and sensor lines to be connected to the outside world (gold pads)

D. DiVincenzo, "Fault tolerant architectures for superconducting qubits," Phys. Scr. T **137** (2009) 014020.

A recent IBM qubit chip

QUANTUM COMPUTING

Noisy intermediate scale quantum devices

A experimental pivot from of a **few pristine qubi** of **50-100 qubits** but tolerating a significant level

111_VV	asinington			- 10 di	0
do not ha	ve access to this system	m To learn more about acc	ess options, click here [
tails					^
27	Status:	Offline	Avg. CNOT Error:	9.388e-1	
2 /	Total pending jobs:	0 jobs	Avg. Readout Error:	8.822e-2	
	Processor type @:	Eagle r1	Avg. T1:	74.28 us	
	Versions	0.0.1	Avg. 72:	101.43 us	
	Basis gates:	CX, ID, RZ, SX, X	Providers with access:	(4)	
	Your usage:	98). 	Supports Qiskit Runtime:	No	
upcomin	g reservations				
bration da	ita		Last	calibrated: 25 days ago	ž A
🕯 Map vie	w ld Graph view	田 Table view			
e:					-
requency	(GHz) ~	0-0-0-0	-0-0-0-0-0	-0-0-0-	0 -(
	Avg 5.065	0	0 0		0
4.785	max 5.297	0-0-0-0	-0-0-0-0-0	9-0-0-0-	
noction:		33	34	65	
NOT error	×.	0-0-0-0-0			0-1
	Avg 9.388a-1		1-0-0-0-0		Y.
E 3942-3	mas 1.900e+9	62		9	9

<u>%-@-@-@-@-@-8-8-8-8-8-8-8-</u>

M=G=G=O=G=G=@=@=@=@=@=@=

B-B-B-B-B-B-B-B-A-(

ibm washington

Quantum Computing in the NISQ era

Noisy intermediate scale quantum devices

A experimental pivot from of a **few pristine qubits** to the realization of circuit architectures of **50-100 qubits** but tolerating a significant level of **imperfections**.

IBM, Google, CAS, ..., use superconducting charge qubits: the transmon

What's on the menu for today: A taste for the potential dangers and limits in this approach.

What's really on the chip?

© Simon Trebst

Work at ETH group

Situation with scale-up. 16-qubit IBM cloud quantum computer

Metalized structure on Si chip

(all resemblance to normal chips ends there.)

Qubit possibilities are superconducting/SQUID type single electron type

16 qubits (highlighted white) active part is nanometer scale

Massive additional structures are resonant couplers, sections of coplanar waveguides

T=0.02 K

Example of problematic situation: 16-qubit IBM chip

Qubits indicated are not supposed to have any direct entangling interaction

Nevertheless there is one, at the 1 MHz level

Not very big, but 10⁴ linewidths!

Black-box modeling methodology

 $\omega_i \omega_j$

Black box modeling formulas:

Solgun, DiVincenzo, Gambetta, "Simple Impedance Response Formulas for the Dispersive Interaction Rates in the Effective Hamiltonians of Low Anharmonicity Superconducting Qubits," IEEE Trans. Micro. Theory and Techn., **67** (3), 928-948 (2019).

- Introduces new formulas for qubit J couplings, drive crosstalk, and other quantities, in terms of multiport impedance
- The 7-port "gray-box", or the 10-port IBM device on the right can be accurately simulated with HFSS, given the full impedance matrix

 $H = J_{ij}(X_iX_j + Y_iY_j) + \dots$

• E.g., J-coupling formula:

Work with Solgun, Gambetta (IBM)

Very good theory-experiment correspondence for J couplings

An impression of the meshing needed in the microwave simulation

Real instrumentation for

qubit protection, manipulation, and measurement

State of the art (2015): Fully controlled 9-qubit device (UCSB/Google)

J. Kelly et al., State preservation by repetitive error detection in a superconducting quantum circuit, Nature 519, 66–69 (05 March 2015).

UCSB/Google Classical control: 23 control wires for the 9 qubits!

FIG. S29. Electronics and Control Wiring. Diagram detailing all of the control electronics, control wiring, and filtering for the experimental

Waveforms of classical signals going to the dilution refrigerator

FIG. S27. Waveform data for eight cycles of the nine qubit repetition code.

The ugly part of the architecture – meter-long cable runs to control-room instrumentation

Number of cables ~ 2x the number of qubits

Millions of qubits ???

1 meter

Workhorse

refrigerator

"dilution"

Vision: Scalable architecture – needs cold analog & digital electronics

Outline

- The nature of qubits/quantum algorithms
- Materials and devices for a quantum computer
 - (Solid state perspective)
- Error correction and fault tolerance
- Strategies for 2D layouts for qubits
- Measurement, Isolation, Amplification
- The full system view