

TWO QUANTUM ADIABATIC OPTIMIZATION USE CASES FOR THE ENERGY SECTOR Giuliana Siddi Moreau, Lorenzo Pisani, Erminia Leonardi, Carlo Podda, Lidia Leoni, Giacomo Cao and Enrico Prati

Quantum computing use cases for the energy sector

About us: Interdisciplinary research center located in the Science and Technology Park of Pula, Sardinia, Italy. Founded in 1990; Carlo Rubbia, Nobel Prize, first President, RTD staff of ~130 people

Goals:

- applying quantum computing to solve new challenges for real world use cases
- quantum technologies in the CRS4's areas of expertise (Information society, Biosciences, Aerospace, Visual computing, Energy & environment, Smart cities projects)

Use cases at at CRS4

- Multi-tower heliostat field adiabatic optimization [solar energy production]
- Gravity data inversion as adiabatic optimization [geophysical prospection for fossil energy resources]

Solar energy is a "free" and practically inexhaustible energy source

- Target: **Maximize** the collection efficiency
- Point concentration systems (solar towers) and modular systems (multi-tower) are more efficient than linear systems
- **Dynamic optimization** of the aim tower improves the **system efficiency**

Lorenzo Pisani, <u>Giuliana Siddi Moreau</u>, Erminia Leonardi, Carlo Podda, Andrea Mameli, Giacomo Cao, **Multi-tower heliostat field optimization by means of adiabatic quantum computer**, Solar Energy, Volume 263, 111893,(2023)

Example: 61x61 mirror, 2-towers system

Problem complexity

Example configuration: 3721 mirrors, 2 receivers

The number of possible solutions grows exponentially with the number of mirrors Nh (Nt^{Nh} = $2^{3721} \approx 10^{1120}$)

Numerical setup

- Quadratic Unconstrained Binary Optimization (QUBO) formulation solved in quantum annealers.
- Results for systems ranging from 2 to 9 towers and from tenths to thousands of heliostats.
- Quantum annealers, used in hybrid mode, are effective in finding good solutions in seconds.

Results: Number of towers

By increasing the number of towers (black circles), the complexity further increases. The model can still manage easily **systems with many towers**.

Results: configuration update according to sun direction

Calculation must be fast to pursue the optimal configuration

Results: computational time of 13 seconds on a D-Wave adiabatic quantum computer

Use case #2 at CRS4: fossil energy resources

Geophysical methods are used for exploration of fossil energy resources

- Many different methods (seismic, EM, gravity) are compared for imaging
- Gravity data inversion reconstructs the shape of a density anomaly from surface acquisitions
- III-posed inversion problem, mathematical constraints to lower the dimensionality of the solution space, sharp solutions are lost in case of regularization

<u>Giuliana Siddi Moreau</u>, Lorenzo Pisani, Andrea Mameli, Carlo Podda, Giacomo Cao, Enrico Prati, Gravity data inversion by adiabatic quantum computing", Advanced Quantum Technologies, 03 November 2023 https://doi.org/10.1002/qute.202300152

Use case #2 at CRS4: fossil energy resources

- Gravity quantum-enhanced binary inversion formulated as a Quadratic Unconstrained Binary Optimization (QUBO)
- 2 different realistic test cases characterized by an increasing complexity (non-convexity of the associated optimization problem).
- In the more complex case, a **hybrid implementation** coupling quantum adiabatic computing with classical annealing provides an **improved solution** with a reduced computational cost.

Results for convex optimization

- The results of the imaging on the are improvable, using a different representation of the surface data tp counteract Green's function decay.
- There is a weak computational advantage on the quantum annealer.
- HPC methods are very effective for convex optimization..
- In the non-convex optimization use case, imposing the quantum computing solution as the initial solution for HPC solvers can provide better solutions.

Results for non-convex optimization

G. Siddi Moreau – CRS4 -HPCQC 2023

Quantum computing applications for the energy sector can be beneficial:

- for combinatorial problems, especially if you have to perform real-time calculations and you are interested in a good local minimum close to the global minimum.
- many problems that feature non-convex optimization can benefit of hybrid quantum methods.

Acknowledgements

The authors acknowledge the **CINECA award** under the **ISCRA initiative**, for the availability of adiabatic Quantum Computing resources and support. This work was carried out with the financial contribution of the Sardinia Regional Authorities.

Thank you for your attention

Giuliana Siddi Moreau

Quantum Computing, PL

Email: julie@crs4.it

Tel: **+39 070 9250 273** Mob: **+39 333 6588146**

CRS4 URL: http://www.crs4.it

G. Siddi Moreau – CRS4 -HPCQC 2023