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Why tensor networks
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dim(ℋ) = 2n

We can represent a 
subset efficiently

|ψ⟩ =
χ

∑
α=1

λα|Aα⟩ |Bα⟩

Tensor networks compress the quantum correlations 
between subsystems  compress entanglement⇒

Only keep highest  Schmidt valuesχ

?
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Bonds encode 
entanglement 
between the 

bipartitions of 
qubits that they 

connect

χ

O(2n) → O(2nχ2)

Each tensor (circle) encodes 
the state of a qubit

MPS simulations are

not limited by the


number of qubits but

by the entanglement

Memory requirements
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Optimisation & parallelism

5

Node 0 Node 1

Gates acting on 
the same qubits 

are first contracted 
together, then with 

the state

Barrier: wait for the 
data from node 0

Copy of the qubit state
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Applications
Ab initio two-dimensional digital twin for  
quantum computer 
Jaschke, Daniel, et al. arXiv:2210.03763

Entanglement entropy production in QNN 
Ballarin, Marco, et al. Quantum 7, 1023 (2023) 
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Scalable digital quantum simulation of lattice fermion theories with local encoding 
Ballarin, Marco, et al. arXiv:2310.15091
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ℱi(χ) = ⟨ψ |ϕ⟩
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ℱtot(χ) ≥ ∏
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Fidelity at the end 
of the simulation


