Quantum Matcha Tea

A tensor network emulator for quantum circuits on Leonardo

Marco Ballarin
Università degli studi di Padova

Running quantum algorithms

Why tensor networks

Why tensor networks

We can represent a subset efficiently

Why tensor networks

Why tensor networks

We can represent a subset efficiently

Tensor networks compress the quantum correlations

$$
|\psi\rangle=\sum_{\alpha=1}^{\chi}
$$ between subsystems \Rightarrow compress entanglement

Why tensor networks

Matrix product states

Memory requirements
$O\left(2^{n}\right) \rightarrow O\left(2 n \chi^{2}\right)$

Matrix product states

Each tensor (circle) encodes
the state of a qubit

Memory requirements
$O\left(2^{n}\right) \rightarrow O\left(2 n \chi^{2}\right)$

Matrix product states

> Memory requirements
> $O\left(2^{n}\right) \rightarrow O\left(2 n \chi^{2}\right)$

Matrix product states

> Memory requirements
> $O\left(2^{n}\right) \rightarrow O\left(2 n \chi^{2}\right)$

Matrix product states

Each tensor (circle) encodes
the state of a qubit

> Memory requirements
> $O\left(2^{n}\right) \rightarrow O\left(2 n \chi^{2}\right)$

MPS simulations are

 not limited by the number of qubits but by the entanglement
Optimisation \& parallelism

Optimisation \& parallelism

Gates acting on the same quits are first contracted together, then with the state

Optimisation \& parallelism

Gates acting on the same quits are first contracted together, then with the state

Barrier: wait for the data from node 0

Quantum Matcha Tea on Leonardo

Load the module on Leonardo

Quantum Datcha Tea on Leonardo

```
    @login02 ~]$ module load profile/quantum
    @login02 ~]$ module load qmatcha_tea
```

 import qtealeaves.observables as obs
    ```
    import qtealeaves.observables as obs
    from qmatchatea import run_simulation, QCConvergenceParameters, QCBackend
circuit = QuantumCircuit(100)
observables = obs.TNObservables()
observables += obs.TNObsProjective(1024)
conv_params = QCConvergenceParameters(
    max_bond_dimension=64 # Maximum bond dimension of MPS
)
backend = QCBackend(
    backend="PY", # Either "PY" or "FR"
    precision="Z", # Either double "Z" or single "C" precision
    device="cpu", # Either "cpu" or "gpu"
    mpi_approach="SR" # Either Serial "SR" or MPI "CT"
    )
    results = run simulation(
        circuit,
        convergence_parameters=conv_params,
        observables=observables,
        backend=backend,
    )
2 8 \text { print( results.observables )}
29 |

\section*{Quantum Matcha Tea on Leonardo}

\section*{@login02 ~]\$ module load profile/quantum \\ @login02 ~]\$ module load qmatcha_tea}


Load the module on Leonardo


Define quantum circuit in qiskit
```

observables = obs.TNObservables()
observables += obs.TNObsProjective(1024)
conv_params = QCConvergenceParameters(
max_bond_dimension=64 \# Maximum bond dimension of MPS
)
backend = QCBackend(
backend="PY", \# Either "PY" or "FR"
precision="Z", \# Either double "Z" or single "C" precision
device="cpu", \# Either "cpu" or "gpu"
mpi_approach="SR" \# Either Serial "SR" or MPI "CT"
)
results = run_simulation(
circuit,
convergence_parameters=conv_params,
observables=observables,
backend=backend,
)
print(results.observables)
\# Either "cpu" or "gpu"

```
29

\section*{import qtealeaves.observables as obs}
from qmatchatea import run_simulation, QCConvergenceParameters, QCBackend
circuit = QuantumCircuit(100)


\section*{Quantum Matcha Tea on Leonardo}

\section*{@login02 ~]\$ module load profile/quantum}
@login02 ~]\$ module load qmatcha_tea

\section*{Loading qmatcha_tea/0.3.11}


Load the module on Leonardo
```

import qtealeaves observabtes
from qmatchatea import run_simulation, QCConvergenceParameters, QCBackend

```
    circuit = QuantumCircuit(100)
    observables = obs.TNObservables()
    observables += obs.TNObsProjective(1024)
    conv_params = QCConvergenceParameters(
        max_bond_dimension=64 \# Maximum bond dimension of MPS
    )
    backend = QCBackend(
        backend="PY", \# Either "PY" or "FR"
        precision="Z", \# Either double "Z" or single "C" precision
        device="cpu", \# Either "cpu" or "gpu"
        mpi_approach="SR" \# Either Serial "SR" or MPI "CT"
    )
    results = run simulation(
        circuit,
        convergence_parameters=conv_params,
        observables=observables
        backend=backend
    )
    print( results.observables )
29

\section*{Quantum Matcha Tea on Leonardo}

\section*{@login02 ~]\$ module load profile/quantum}
@login02 ~]\$ module load qmatcha_tea
oading qmatcha_tea/0.3.11


Load the module on Leonardo
```

rom qiskit import QuantumCircuit
import qtealeaves.observables as obs
from qmatchatea import run_simulation, QCConvergenceParameters, QCBackend

```
    circuit = QuantumCircuit(100)


Define quantum circuit in qiskit
    observables = obs.TNObservables()
    observables += obs.TNObsProjective(1024)


Define the observables
conv_params = QCConvergenceParameters(
max_bond_dimension=64 \# Maximum bond dimension of MPS
)
    backend = QCBackend(
        backend="PY",
        precision="Z",
        device="cpu",
        mpi_approach="SR"
)
    results \(=\) run_simulation(
        circuit,
        convergence_parameters=conv_params,
        observables=observables,
        backend=backend,
    )
    print( results.observables )
29
```


Either "PY" or "FR"

```
\# Either double "Z" or single "C" precision
\# Either "cpu" or "gpu"
\# Either Serial "SR" or MPI "CT"

\section*{Quantum Matcha Tea on Leonardo}

\section*{@login02 ~]\$ module load profile/quantum}
@login02 ~]\$ module load qmatcha_tea

\section*{oading qmatcha_tea/0.3.11}


Load the module on Leonardo
```

rom qiskit import QuantumCircuit
import qtealeaves.observables as obs
from qmatchatea import run_simulation, QCConvergenceParameters, QCBackend

```
    circuit = QuantumCircuit(100)


Define quantum circuit in qiskit
    observables = obs.TNObservables()
    observables += obs.TNObsProjective(1024)
    conv_params = QCConvergenceParameters(
        max_bond_dimension=64 \# Maximum bond dimension of MPS
    )
    backend = QCBackend (
        backend="PY",
        precision="Z",
        device="cpu",
        mpi_approach="SR"
    )
    results = run_simulation(
        circuit,
        convergence_parameters=conv_params,
        observables=observables,
        backend=backend,
    )
    print( results.observables )
29
```


Either "PY" or "FR"

 # Either double "Z" or single "C" precision
 # Either "cpu" or "gpu"
 # Either Serial "SR" or MPI "CT"
 \# Either Serial "SR" or MPI "CT"

```


Define the observables


Define the convergence parameters
backend = QCBackend ( backend="PY", precision="Z",
device="cpu", mpi_approach="SR"

Define the backend


\section*{Quantum Matcha Tea on Leonardo}
@login02 ~]\$ module load profile/quantum
@login02 ~]\$ module load qmatcha_tea
oading qmatcha_tea/0.3.11


Load the module on Leonardo

\section*{import qtealeaves.observables as obs}
from qmatchatea import run_simulation, QCConvergenceParameters, QCBackend
circuit \(=\) QuantumCircuit(100)


Define quantum circuit in qiskit
observables = obs.TNObservables()
observables += obs.TNObsProjective(1024)
conv params = QCConvergenceParameters(
max_bond_dimension=64 \# Maximum bond dimension of MPS
    )
    backend = OCBackend(
        backend="PY",
        precision="Z",
        device="cpu",
        mpi_approach="SR"
    )
    results = run simulation(
        circuit,
        convergence_parameters=conv_params,
        observables=observables,
        backend=backend,
    )
    print( results.observables )
29
```


Either "PY" or "FR"

 # Either double "Z" or single "C" precision
 # Either "cpu" or "gpu"
    ```
    \# Either Serial "SR" or MPI "CT"
 Run the simulation

\section*{Quantum Matcha Tea on Leonardo}
@login02 ~]\$ module load profile/quantum
@login02 ~]\$ module load qmatcha_tea
oading qmatcha_tea/0.3.11


Load the module on Leonardo
```

rom qiskit import QuantumCircuit
import qtealeaves.observables as obs
from qmatchatea import run_simulation, QCConvergenceParameters, QCBackend
circuit = QuantumCircuit(100)

```

```

 observables = obs.TNObservables()
 observables += obs.TNObsProjective(1024)
 conv_params = QCConvergenceParameters(
 max bond dimension=64 # Maximum bond dimension of MPS
)
 backend = QCBackend(
 backend="PY",
 precision="Z"
 device="cpu",
 mpi_approach="SR"

Either "PY" or "FR"

 # Either double "Z" or single "C" precision
 # Either "cpu" or "gpu"
 # Either Serial "SR" or MPI "CT"
 conv_params = QCConvergenceParameters(
max_bond_dimension=64 \# Maximum bond dimension of MPS
backend = OCBackend (backend="PY",
precision="Z" mpi approach="SR"

```

Define quantum circuit in qiskit
    )
    results = run simulation(
        circuit,
        convergence_parameters=conv_params,
        observables=observables,
        backend=backend,
    )
print( results.observables


Define the observables
results = run simulation( circuit,
observables=observables,
backend=backend,
)
print( results.observables \(\square\)

\section*{Benchmarks: Shor algorithm}


Factorization of prime numbers \(p, q\)

\(N=p q \rightarrow p, q\)


Thanks to Alessandro Cavion for providing the algorithm

\section*{Benchmarks: Shor algorithm}


Factorization of prime numbers \(p, q\)
\(N=p q \rightarrow p, q\)


\section*{Benchmarks: Shor algorithm}


Factorization of prime numbers \(p, q\)

\(N=p q \rightarrow p, q\)


\section*{Benchmarks: QFT on entangled state}



\section*{Benchmarks: QFT on entangled state}

Random MPS at bond dimension \(\chi / 2\)

\section*{n=10
\(n=100\) qubits}


\section*{Benchmarks: QFT on entangled state}

Random MPS at bond dimension \(\chi / 2\)


\section*{Benchmarks: QFT on entangled state}

Random MPS at bond dimension \(\chi / 2\)


\section*{Applications}

Entanglement entropy production in QNN Ballarin, Marco, et al. Quantum 7, 1023 (2023)


Scalable digital quantum simulation of lattice fermion theories with local encoding Ballarin, Marco, et al. arXiv:2310.15091


\section*{Optimal Exact Sampling of Tensor Networks}



Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks





Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks




Optimal Exact Sampling of Tensor Networks




\section*{OPES on GHZ + errors}


\[
|\psi\rangle=\left.\frac{{ }^{-} \frac{-}{1}}{\mid \sqrt{\sqrt{2+\epsilon}}}(|00 \ldots 0\rangle+|11 \ldots 1\rangle)\right|^{\prime}+\sqrt{\frac{\epsilon}{N(2+\epsilon)}} \sum_{\alpha=1}^{N}|\alpha\rangle
\]

\section*{OPES on GHZ + errors}



\section*{OPES on GHZ + errors}



\section*{OPES on GHZ + errors}


Sum of known probability.

\[
|\psi\rangle=\frac{\mid}{\left\lvert\, \frac{1}{\sqrt{2+\epsilon}}\right.}(|00 \ldots 0\rangle+|11 \ldots 1\rangle)_{\mid}+\left\lvert\, \sqrt{\left.\frac{\mathrm{GH}}{\frac{\epsilon}{N(2+\epsilon)}} \sum_{\alpha=1}^{N}|\alpha\rangle \right\rvert\,} \begin{gathered}
\text { Small contribution } \\
\text { due to noise } \\
\epsilon \ll 1
\end{gathered}\right.
\]

\section*{Conclusions}

MPS simulations are not limited by the number of qubits but by the entanglement

Shor algorithm


\section*{Conclusions}

MPS simulations are not limited by the number of qubits but by the entanglement

Easy-to-use python frontend and fast HPC-ready backend (Both GPU and CPU)

Shor algorithm


\section*{Conclusions}

MPS simulations are not limited by the number of quits but by the entanglement

Easy-to-use python frontend and fast HPC-ready backend (Both GPU and CPU)

Quantum Matcha TEA is available on Leonardo! module load qmatcha_tea

Shoo algorithm


\section*{Thanks for your attention}


Dipartimento di Fisica
e Astronomia Galileo Galilei


QUANTUM COMPUTING AND SIMULATION CENTER
https://baltig.infn.it/quantum_tea/quantum_tea


Riccardo Mengoni


Sara Marzella


Daniel Jaschke


Daniele Ottaviani


Gabriella Bettonte

Additional slides

\section*{Convergence checks \& error bound \\ }

\section*{Convergence checks \& error bound}


\section*{Convergence checks \& error bound} \(|\psi\rangle=\sum_{\alpha=1}^{\chi_{T}^{i-1}} \underbrace{\left|A_{\alpha}\right\rangle}_{-} \lambda_{\alpha}^{\left|B_{\alpha}\right\rangle}\)

\section*{Convergence checks \& error bound}


\section*{Convergence checks \& error bound}


Only keep highest \(\chi\) singular values, \(|\phi\rangle\)

\section*{Convergence checks \& error bound}


Only keep highest \(\chi\) singular values, \(|\phi\rangle\)
Fidelity of the state
\[
\left.\right|^{2}
\]
\[
\begin{aligned}
& \text { Fidelity of the state }_{i}(\chi)=|\langle\psi \mid \phi\rangle|^{2}=\left|1-\sum_{\alpha=\chi+1}^{\chi_{T}} \lambda_{\alpha}^{2}\right|
\end{aligned}
\]

\section*{Convergence checks \& error bound}


Only keep highest \(\chi\) singular values, \(|\phi\rangle\)

> Fidelity of the state

\section*{Convergence and error checks}


\section*{Convergence and error checks}


Fidelity of the state after a single gate
\[
\mathscr{F}_{i}(\chi)=
\]
\[
\left|1-\sum_{\alpha=\chi+1}^{\chi_{T}^{i}} \lambda_{\alpha}^{2}\right|^{2}
\]

\section*{Convergence and error checks}


Fidelity of the state after a single gate
\[
\mathscr{F}_{i}(x)=
\]

Fidelity at the end
\[
\left|1-\sum_{\alpha=\chi+1}^{\chi_{T}^{i}} \lambda_{\alpha}^{2}\right|^{2}
\] of the simulation
\[
\mathscr{F}^{t o t}(\chi) \geq \prod \mathscr{F}_{i}(\chi)
\]```

