DIVERSIFYING INVESTMENTS AND MAXIMIZNG SHARPE RANIOE A NOVEL QUBO FORMULATION

Luca Asproni
Christian Mattia

| Data Reply
| Intesa Sanpaolo

SPEAKERS

CHRISTIAN MATTIA INTESA 园 SANPAOLO
Quantum Optimization Specialist
christian.mattia@intesasanpaolo.com

AGENDA

- Portfolio optimization: problem overview and data description
- Novel formulation: QUBO for maximization of diversification and Sharpe Ratio
- Results and conclusions

INTESA 圆 SANPAOLO

PORTFOLIO OPTIMZATION: PROBHEM OVERVIEW

PORTFOLIO OPTIMIZATION

Overview \& Goals

- Identify the optimal investments on a basket of assets satisfying desired conditions on the expected return and portfolio risk
- Provide a diversified portfolio, allocating budget on multiple sectors
- First component of objective function: Sharpe Ratio maximization

$$
\begin{aligned}
& \text { Sharpe Ratio }=\frac{w^{T} \mu}{\sqrt{w^{T} \sum w}} \\
& \text { - } \Sigma \text { variance-covariance matrix } \\
& \text { - } w_{i} \in[0,1] \text { amount invested } \\
& \text { - on } i \text { - th asset }
\end{aligned}
$$

- Second component: diversification maximization which makes the problem, in general, non convex, and thus hard to solve with standard techniques

DATA DESCRIPTION

(a) Simple returns

(b) Log returns

- Historical S\&P500 asset prices taken as daily adjusted closes from 2010 to 2020
- Returns and covariance matrix are annualized, i.e. their value is multiplied by 252 (assumed number of working days in a year)
- Historical returns are considered in the form of log-returns instead of simple returns, as suggested by Shapiro - Q-Q plot shown in figure as a qualitative comparison of the distributions

NOVEL FORMULATION: QUBO FOR MAXIMIZATION OF DIVERSIFICATION AND SHARPE RATIO

QUBO MODEL

－Quantum annealers minimize Ising Energy

$$
H=\sum_{i} h_{i} S_{i}+\sum_{i j} J_{i j} S_{i} S_{j}
$$

－Changing variables，the problem is equivalently written as a QUBO：
$\min E(x \mid Q)=\sum_{i \leq j} x_{i} Q_{i j} x_{j}$

Q

Quadratic：
the highest power of variables is x^{2}
Unconstrained：
no external constraints are applied

Binary：

variables are binary $\{0,1\}$
Optimization：
Minimization of an objective function（the energy）

STEP 1：REFORMULATION

Portfolio selection
（current model from literature）
$\sum_{i} a_{i} q_{i}+\sum_{i} \sum_{j} b_{i j} q_{i} q_{j}$

With：
$q_{i} \in\{0,1\}, a_{i}=\frac{\mu_{i}}{\sigma_{i}}$ and $b_{i j}=\rho_{i j}$, where $\rho_{i j}$ is the correlation
between asset i and asset j

Proxy formulation
With：$\sum_{i=1}^{n} a_{i}\left(\sum_{l=0}^{p-1} d_{l} x_{i l}\right)+\sum_{i=1}^{n} \sum_{j=i+1}^{n} b_{i j}\left(\sum_{l=0}^{p-1} d_{l} x_{i l}\right)\left(\sum_{l=0}^{p-1} d_{l} x_{j l}\right)$
$x_{i} \in\{0,1\}, a_{i}=\frac{\mu_{i}}{\sigma_{i}}, b_{i j}=\rho_{i j}, d_{l}=\frac{2^{1}}{500}$ allocation discretization coefficient and
$d_{p-1}=1-\sum_{l=0}^{p-2} d_{l}$, investment granularity $=0.2 \%$
－で REPLY INTESA 园 SANPAOLO

STEP 1: REFORMULATION

Portfolio selection
(current model from literature)
$\sum_{i} a_{i} q_{i}+\sum_{i} \sum_{j} b_{i j} q_{i} q_{j}$
With:
$q_{i} \in\{0,1\}, a_{i}=\frac{\mu_{i}}{\sigma_{i}}$ and $b_{i j}=\rho_{i j}$, where $\rho_{i j}$ is the correlation
between asset i and asset j
Proxy formulation
$\sum_{i=1}^{n} a_{i}\left(\sum_{l=0}^{p-1} d_{l} x_{i l}\right)+\sum_{i=1}^{n} \sum_{j=i+1}^{n} b_{i j}\left(\sum_{l=0}^{p-1} d_{l} x_{i l}\right)\left(\sum_{l=0}^{p-1} d_{l} x_{j l}\right)$
With:
$x_{i} \in\{0,1\}, a_{i}=\frac{\mu_{i}}{\sigma_{i}}, b_{i j}=\rho_{i j}, d_{l}=\frac{2^{1}}{500}$ allocation discretization coefficient and
$d_{p-1}=1-\sum_{l=0}^{p-2} d_{l}$, investment granularity $=0.2 \%$

Proxy Formulation does not mathematically equate to the maximiration of the Sharpe Ratio as it is defined in the classical problem!

STEP 1: REFORMULATION

Classical model (quadratic formulation)

$$
\begin{gathered}
\min y^{T} \Sigma y \\
\text { s.t } \mu^{T} y=1, \quad(y, k) \in Y
\end{gathered}
$$

With:
$Y:=\left\{y \in R^{N}, k \in R \mid k>0, w=\frac{y}{k} \in W\right\} \cup(0,0)$,
Σ var-cov matrix W set of portfolios s.t. $e^{T} w=1 \forall w \in W$ and
assuming that $\exists \widehat{w} \in W \mid \mu^{T} \widehat{w}>0$

Proxy formulation

$$
\sum_{i=1}^{n} a_{i}\left(\sum_{l=0}^{p-1} d_{l} x_{i l}\right)+\sum_{i=1}^{n} \sum_{j=i+1}^{n} b_{i j}\left(\sum_{l=0}^{p-1} d_{l} x_{i l}\right)\left(\sum_{l=0}^{p-1} d_{l} x_{j l}\right)
$$

With:
$x_{i} \in\{0,1\}, a_{i}=\frac{\mu_{i}}{\sigma_{i}},_{i j}=\rho_{i j}, d_{l}=\frac{2^{1}}{500}$ allocation discretization coefficient and $d_{p-1}=1-\sum_{l=0}^{p-2} d_{l}$, investment granularity $=0.2 \%$

Proposed formulation

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} \Sigma_{i j}\left(\sum_{k=0}^{p-1} c_{k} x_{i k}\right)\left(\sum_{k=0}^{p-1} c_{k} x_{j k}\right)
$$

With:
$x_{i} \in\{0,1\}, c_{k}=\frac{2^{\mathrm{k}}}{10}$ allocation discretization coefficient, $c_{p-1}=\frac{1}{\mu_{\text {min }}}-\sum_{l=0}^{p-2} c_{k}$, discretization step $=0.1$ and assuming $\mu_{i}>0 \forall i$

STEP 2: DIVERSIFICATION

Need definition

The need is to diversify the portfolio selection over
multiple sectors

Mathematical model

$$
\sum_{i=1}^{n} \sum_{k=0}^{p-1} f_{i} x_{i k}+\sum_{i=1}^{n} \sum_{k=0}^{p-1} \sum_{j=1}^{n} \sum_{l=0}^{p-1} D_{i j} x_{i k} x_{j l}
$$

In general, this objective function is not convex!

Where:
$f_{-} i<0 \forall i=1, \ldots, n$ vector of components that drive the solution to invest a positive quantity and $D \in \mathbb{B}^{n \times n}$ s.t.
$D_{i j}= \begin{cases}1 & \text { asset } \mathrm{i} \text { and } \mathrm{j} \text { belong to the same sector } \\ 0 & \text { otherwise }\end{cases}$ otherwise

OVERALL PROPOSED QUBO MODEL

$$
Q U B O=\lambda_{0} H_{0}(x)+\lambda_{1} H_{1}(x)+\lambda_{2} H_{2}(x)
$$

$\boldsymbol{H}_{\mathbf{0}} \mathbf{(x)}$ Sharpe Ratio Component	$\sum_{i=1}^{n} \sum_{j=i}^{n} \Sigma_{i j}\left(\sum_{k=0}^{p-1} c_{k} x_{i k}\right)\left(\sum_{k=0}^{p-1} c_{k} x_{j k}\right)$
$\boldsymbol{H}_{\mathbf{1}}(\mathbf{x})$ Constraint Component	$\left(\sum_{i=1}^{n} \sum_{k=0}^{p-1} \mu_{i} c_{k} x_{i k}-1\right)^{2}$
$\boldsymbol{H}_{\mathbf{2}} \mathbf{(x)}$	
Diversification Component	$\sum_{i=1}^{n} \sum_{k=0}^{p-1} f_{i} x_{i k}+\sum_{i=1}^{n} \sum_{k=0}^{p-1} \sum_{j=1}^{n} \sum_{l=0}^{p-1} D_{i j} x_{i k} x_{j l}$

RESULTS AND CONCLUSIONS

RESULTS

Best results among the QUBO are obtained on the Proposed Formulation for Sharpe Ratio Maximization

QUBO formulation provides flexible framework for trade-off between Sharpe Ratio and diversification

QUBO AND HPG INFRASTRUGTURES

- QUBO is a model that can greatly benefit from HPC infrastructure
- Complex nonlinear problems that fit the QUBO formulation can benefit from massive parallelization techniques, by:
- Quickly building large QUBO matrices
- Performing parallel computations on the matrix
- Avoiding connectivity limitations of current Quantum Computers
- MegaQUBO is Data Reply's accelerator to handle large-scale QUBO problems in a reduced amount of time, leveraging HPC infrastructures

INTESA 圆 SANPAOLO

WRAP-UP AND CONCLUSIONS

- We introduced the Portfolio Optimization problem in a common, yet classically challenging, setting
- We presented a novel QUBO formulation to solve the problem and discussed the results in regards to hybrid Quantum-Classical and High-Performance computing
- Future possible extentions of this work include:
- Handle the Portfolio Optimization problem with MegaQUBO
- Deeper investigation of alternative algorithms in comparison to solving our QUBO formulation

THANK YOU FOR THE ATHENTION

