Anton Quelle

CINECA

Practical Quantum Computing 2022

Efficient Quantum simulation using Tensor Network states

- Quantum complexity
- Tensors
- Tensor Network representation
- Contraction order
- Example: Hardware efficient ansatz QVC
- If time permits: Controlling bond dimension

Quantum complexity

$$
\begin{aligned}
&|\psi\rangle_{1}=\sum_{i} A_{i_{1}}\left|i_{1}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle= \\
& \alpha_{0} \begin{array}{l}
1 \\
0
\end{array}+\alpha_{1} \frac{0}{1}=\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}
\end{aligned}
$$

Qbits	Type	Parameters
1	A_{i}	2

Quantum complexity

$$
\begin{aligned}
& |\psi\rangle_{1}=\sum_{i} A_{i_{1}}\left|i_{1}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \\
& |\psi\rangle_{2}=\sum_{i} A_{i_{1} i_{2}}\left|i_{1} i_{2}\right\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle
\end{aligned}
$$

Qbits	Type	Parameters
1	A_{i}	2
2	$A_{i j}$	4

| α_{0} | α_{1} |
| :--- | :--- | :--- |
| α_{2} | α_{3} |

The same information can be represented
in vector or matrix form

Quantum complexity

$$
\begin{aligned}
& |\psi\rangle_{1}=\sum_{i} A_{i_{1}}\left|i_{1}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \\
& |\psi\rangle_{2}=\sum_{i} A_{i_{1} i_{2}}\left|i_{1} i_{2}\right\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle \\
& |\psi\rangle_{N}=\sum_{i} A_{i_{1} \ldots i_{N}}\left|i_{1} \ldots i_{N}\right\rangle
\end{aligned}
$$

Qbits	Type	Parameters
1	A_{i}	2
2	$A_{i j}$	4
3	$A_{i j k}$	8
N	$A_{i_{1} \ldots i_{N}}$	2^{N}

	α_{4}	α_{5}
α_{0}	α_{1}	α_{7}
α_{2}	α_{3}	

For 3 qubits the quantum state can be encoded as a rank 3 tensor

Quantum complexity

$$
\begin{aligned}
& |\psi\rangle_{1}=\sum_{i} A_{i_{1}}\left|i_{1}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \\
& |\psi\rangle_{2}=\sum_{i} A_{i_{1} i_{2}}\left|i_{1} i_{2}\right\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle \\
& |\psi\rangle_{N}=\sum_{i} A_{i_{1} \ldots i_{N}}\left|i_{1} \ldots i_{N}\right\rangle
\end{aligned}
$$

Qbits	Type	Parameters
1	A_{i}	2
2	$A_{i j}$	4
3	$A_{i j k}$	8
N	$A_{i_{1} \ldots i_{N}}$	2^{N}

$A_{i_{1} \ldots i_{N}}$ is an object with N indices, i.e. A rank N tensor
\# parameter for $\mathrm{N}=300$ is $\approx 10^{90}$ \# of particles in the observable universe vigintillion $\approx 10^{80}$

Array of coefficients for 40 qbits requires 1 Tb of memory.
How to store it in a computer ?

Tensors

$$
\begin{gathered}
\text { vector } \\
\sum_{i} m_{j} v_{j}= \\
\sum_{j} M_{i j} v_{j}= \\
M_{j}= \\
i
\end{gathered}
$$

Tensor Network representation

We represent a high rank tensor as a product of low rank tensors.

$$
|\psi\rangle_{N}=\sum_{i} A_{i_{1} \ldots i_{N}}\left|i_{1} \ldots i_{N}\right\rangle
$$

Matrix Product State/ Tensor Train

Assume each index of A has $\operatorname{dim} d$, then the rank of $M_{i}<=d^{N / 2}$
For relevant states, the rank of M_{d} is usually significantly smaller
Let rank $M_{i}=m$ for convenience, then the tensor network is defined by $2 N m^{2}$ for a 2 level system.

Matrix Product State(MPS)/ Tensor Train

The density-matrix renormalization group
U. Schollwöck Rev. Mod. Phys. 77, 259

Contraction order

The algorithmic complexity of a tensor network contraction depends on the contraction order!

$\mathrm{O}\left(\mathrm{d}^{4}\right)$ =

Example: Hardware efficient ansatz QVC

CNOT gate is an MPO of bond dimension 2

Example: Hardware efficient ansatz QVC

3 qubit hardware-efficient ansatz as a tensor network

Controlling bond dimension

$\operatorname{Dim}=d_{1} \quad$ Bond dimension grows exponentially in the number of MPO applications. However, the rank of the matrices in the MPS might be much lower than the bond dimension.

There are multiple algorithms to deal with this solution. A simple one uses the canonical form.

Controlling bond dimension

We can write:

Such that

This is called the canonical form (A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States, R. Orus, AOP 349: 117-158)

Controlling bond dimension

If the bond dimension of an MPS is larger than it needs to be, the \diamond will contain zeroes. The bond dimension can be reduced by truncating those bonds.

This also forms the basis for an approximation scheme. In the canonical form, one can truncate a bond to drop all entries of smaller than some cutoff. In practice, this works really well.

