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Quantum complexity
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Quantum complexity
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The same information can be represented 
in vector or matrix form
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For 3 qubits the quantum state can be 
encoded as a rank 3 tensor 
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Quantum complexity
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# parameter for N = 300 is ≈ 1090

# of particles in the observable 
universe vigintillion ≈ 1080

𝐴𝑖1…𝑖𝑁
is an object with N indices, 
i.e. A rank N tensor

Array of coefficients for 40 qbits requires 1 Tb  of memory. 
How to store it in a computer ? 

Anton Quelle, CINECA Practical Quantum Computing school 2022



7

Tensors
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Tensor Network representation
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Matrix Product State/ Tensor Train𝐴

We represent a high rank tensor as a product of low rank tensors. 𝜓 𝑁 =
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Assume each index of A has dim d, then the rank of Mi <= dN/2

For relevant states, the rank of Md is usually significantly smaller

Let rank Mi = m for convenience, then the tensor network is defined by 2𝑁𝑚2 for a 2 level system.

Matrix Product State(MPS)/ Tensor Train

The density-matrix renormalization group
U. Schollwöck Rev. Mod. Phys. 77, 259
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Tensor Network representation
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Contraction order
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The algorithmic complexity of a tensor network contraction depends on the contraction order!
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Contraction order
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…

…

MPS networks scales linearly ≈ 𝑂 𝑁
𝑑 depends on a quantum system 

…

…

=

…

…

=

…

…

= O(sd3)

Dim = s

Dim = d
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Example: Hardware efficient ansatz QVC
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Single qubit gates are MPO’s of bond dimension 1 in a trivial way

𝑎

𝑑

𝑏

𝑒

𝑐

A

𝐵

CNOT =

A and B both have dims (2,2,2)
The non-zero elements are, with indices in alphabetical order
A000 = A111 = B000 = B011 = B101 = C110 = 1

CNOT gate is an MPO of bond dimension 2
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Example: Hardware efficient ansatz QVC
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3 qubit hardware-efficient ansatz as a tensor network
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Controlling bond dimension
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…

…

…=

Dim = d1

Dim = d2

Dim = d1*d2

Bond dimension grows exponentially in the number of MPO applications.
However, the rank of the matrices in the MPS might be much lower than the bond 
dimension.

There are multiple algorithms to deal with this solution. A simple one uses the 
canonical form.
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Controlling bond dimension
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… …=

This is called the canonical form (A Practical Introduction to Tensor Networks: Matrix 
Product States and Projected Entangled Pair States, R. Orus, AOP 349: 117-158)

are diagonal

…

…
is the identity for all bonds, and similar for all 
the mirrored networks.

Such that

We can write:
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Controlling bond dimension
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If the bond dimension of an MPS is larger than it needs to be, the
The bond dimension can be reduced by truncating those bonds. 

will contain zeroes. 

This also forms the basis for an approximation scheme. In the canonical form, 
one can truncate a bond to drop all entries of        smaller than some cutoff.
In practice, this works really well.




