COPYRIGHT - Any reproduction of the images contained in the

QUANDELA

Modular Optical Quantum Computing

available on the cloud

Niccolo Somaschi – Chairman & CTO niccolo.somaschi@quandela.com

15 December 2022 CINECA – Bologna (IT)

to Quantum Computing & Quantum Photonics

QUANDELA

>40 PhDs and engineers in semiconductors, quantum information theory, quantum optical technologies and computer science

Founded in 2017

Paris-Saclay

Munich

Barcelona

Rome

Digital Quantum Computing Approaches

1 Matter Qubits: Ions, Superconductors, Cold Atoms...

Static qubits: physically located in a QPU

Control Signals IN

- Read-OUT Signals
- Highly EFFICIENT 2-qubit GATES (deterministic)
- **BUT** Qubits have a physical size → Manufacturability roadblocks
- **BUT** Each qubit undergoes DECOHERENCE → errors with #qubits

Photons are <u>Flying Qubits</u> → moving through the QPU and through optical fibers

1 PHOTON IN 2 SPATIAL MODES (DUAL RAIL ENCODING)

- ROBUST qubits (no decoherence)
- MANIPULATION with classical elements (telecom, linear optics)
- **BUT** 2-qubit GATES are NOT EFFICIENT (probabilistic) → HARD to scale

Quandela exploits the <u>efficient manipulation of optical qubits</u> but tackle probabilistic nature of gates with a <u>matter-based qubit generator</u>

stic) ility roadblocks rors with #qubits

he <u>efficient manipulation of op</u> of gates with a <u>matter-bas</u>

SUCCESS PROBABILITY << 50%

Scalability & manufacturability with Photonic Quantum Computers

ONFIDEN HALLITY NOTICE – The contents of this presentation is intended solely for the addressee an may contain confidential and /or privileged information and may be legally protected from disclosure

document without the authorization of the author is prohibit

Quandela's OS: classical control based on QC protocol + error correction

→ 96 % *
→ 99.54 % purity **

 \rightarrow 0.05 dB/cm

→ 99,9%

[&]quot;Micropillar single-photon source design with near-unity efficiency and indistinguishability": N. Gregersen, et al, Phys. Rev. B 102, 125301 (2020)

^{** &}quot;Near-optimal single-photon sources in the solid state": N. Somaschi at al, Nature Photonics, 10, 340,2016 -

Cluster states generation for FTQC

MBQCs PROTOCOL

"Measurement-based quantum computation": H. Briegel at al, Nature Physics, 5, 19,2009

QUANDELA'S CLUSTER STATES GENERATOR

[&]quot;Switching network for fusion based QC": S. Bertolucci, .. PSiQuantum arxiv:2109.13760

Cluster states generation for FTQC

MBQCs PROTOCOL

LINEAR OPTICAL ELEMENTES

- PROBABILISTIC
- 1000s of COMPONENTS

"Measurement-based quantum computation": H. Briegel at al, Nature Physics, 5, 19,2009 "Switching network for fusion based QC": S. Bertolucci, .. PSiQuantum arxiv:2109.13760

QUANDELA'S CLUSTER STATES GENERATOR

Massive reduction of overheads:

1 vs 1000s components

Generation rate > x 100 higher than other quantum technologies (QDs & atom based)

N. Coste et al, "High-rate entanglement between a semiconductor spin and indistinguishable photons", arxiv:2207.09881, (2022)

2024:

Spin coherence time 10s ns & >98% purity
→ >5 photons cluster

COPYRIGHT - Any reproduction of the images contained in this

On-premise & cloud accessible, optical QC - today

Upgradability offered by modularity

Scalability by the use of optical fibers and semi-conductor tech.

Low energy consumption (~3 kW) with optimised and integrated cryostats, ready for deployment

MosaiQ

End-users

Front end

Compiler

Assembler

Hardware Modules

Semiconductors

Perceval OS +

Simulator

- 1. Quandela's OS
- 2. Lasers & Electronics
- 3. Photonic Integrated on Chip (PIC)
- 4. Qbit-controller module
- 5. Photonic Qubit Demultiplexer (DMX)
- 6. Cryogenically cooled qubit generator & detectors

Q = 1st European QC-on-cloud provider

- Access to powerful "noisy" simulators (up to 15-20 photons) and real Quantum Processor Units
 - Generate and manage your tokens and keep track of your projects
- Manage your company account and follow the activities of your collaborators
- Intuitive Interface with Extensive Documentation

Optical QPUs in the cloud https://cloud.quandela.com

Quandela is Delivering Real Life Use Cases for Customers Today

- Using quantum certified randomness to generate spy-proof hash keys
- Applications: defense and security, postquantum cryptography, banking industry

Molecular Design

- Using Variational
 Quantum Eigensolver
 (VQE) to resolve 3D-molecular
 configuration
- Application: drug design in pharmaceuticals

+ undisclosed users

- Using state
 superposition to
 simultaneously explore a
 large number of paths to
 research solutions for
 NP-hard problems
- Application: drone cohort flight planning

- Using quantum forward propagation to detect weak signals in long time series
- Application: finance & insurance industry

Undisclosed users

Quandela is Delivering Real Life Use Cases for Customers Today

Solving Partial Differential Equations

- Challenge reducing computing time and resources involved in PDE solving traditionally done on HPC
- Developed a **variational quantum circuit** by exploiting the quantum properties of photons
- Designed for scaling-up towards exponential advantage when compared to classical
- Application: to improve the safety of hydroelectric dams and nuclear plant pipes

Patent + scientific paper

NBD.A

Calculating the Behaviour of Polymer Materials

- Challenge improve accuracy of classical machine learning for classification tasks on large and complex datasets with huge dimension of parameters
- Developed **classical-quantum neural networks** to classify polymers with state-of-the-art results
- **Application:** to allow the **faster** and **more efficient prediction** of **polymers' properties** (e.g., ductility, thermal stability)

A. Ricou et al, "Photonic quantum computing for polymer classification", arxiv:2211.12207, (2022)

Towards QC "advantage" via photonics

With *n* photons, we count the particles in each *m* mode, the size of the space is

$$\binom{n+m-1}{n}$$

Quandela's 24-photon QPU is equivalent to ~40 qubits QC

Quandela - today

QPUs access on https://cloud.quandela.com & full-stack QC systems for *on-premise* deployment

State-of-the-art algorithms for tailored industrial use-cases

Demonstration of the most efficient generation of cluster states – resource for FTQC

"Thank you to Quandela for their ambition, their talent and for so many more projects yet to come! With confidence."

French President Emmanuel Macron

The underlying scientific validation: >8 scientific articles in 2022

Semiconductor Quantum Devices & Quantum Photonics

Coste et al., "High-rate entanglement between a semiconductor spin and indistinguishable photons", arXiv:2207.09881

Pont et al., "High-fidelity generation of four-photon GHZ states on-chip", arxiv 2211:1562

Algorithms and Quantum Information

Emeriau et al., "Quantum Advantage in Information Retrieval", Phys. Rev. X Quantum

Heurtel et al., "Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing", arXiv:2204.00602

Clément et al., "A Complete Equational Theory for Quantum Circuits", arXiv:2206.10577

Mezher et al., "Mitigating errors by Quantum Verification and Post-selection", Phys. Rev. A 105

Kapourniotis et al., "Unifying Quantum Verification and Error-Detection: Theory and Tools for Optimisations", arXiv2206.00631

Mezher et al., "Assessing the quality of near-term photonic quantum devices", arXiv:2202.04735