

A coherent Quantum annelaer on the cloud

Artur Garcia Saez

www.qilimanjaro.tech

Section

O. What Qilimanjaro is up to

- Start-up focused on analog quantum computing
- . Aimed at maximum THS integration
- Coherent superconducting flux qubits
- Aimed at going beyond Ising model
- Partners in AVaQUS
- Spin-off from:

Barcelona Supercomputing Center Centro Nacional de Supercomputación

O. What Qilimanjaro's *HW and SW* teams are up to

Software

Qilimanjaro SW services layout

Hardware

 Design, fabrication and characterization of superconducting qubit technology

Qibo: https://qibo.science/

O. What Qilimanjaro's theory team is up to

Innovation

- Fundamental theory of annealing
- New algorithms and encodings
- Hybrid strategies with an analog system

Applications

- Consultancy on quantum state of the art
- Formulation of
 - algorithms tailored to
 - customer's problems
 - with existing know-how

U. What Qilimanjaro's theory team is up to

Innovation

- Fundamental theory of annealing
- New algorithms and encodings
- Hybrid strategies with an analog system

Internal bridge with hardware and software

- Theory behind
 - the hardware
- Algorithm integration, compilation and
 - optimisation

Applications

- Consultancy on quantum state of the art
- Formulation of
 - algorithms tailored to customer's problems with existing know-how

$igsilon_{igsilon}$ What Qilimanjaro's theory team is up to

Innovation

- Fundamental theory of annealing
- New algorithms and encodings
- Hybrid strategies with an analog system

Internal bridge with hardware and software

- . Theory behind
 - the hardware
- Algorithm integration, compilation and
 - optimisation

Applications

- Consultancy on quantum state of the art
- Formulation of
 - algorithms tailored to customer's problems with existing know-how

1. Fundamentals

- Understand behaviour of the system during the annealing process
- Understand gap behaviour in AQC

• Fundamentals.-

Graph-theoretical analysis on 1st order QPTs for AQC

- Driver (+catalyst) Hamiltonian analysed from graph theory perspective to study loc-loc vs. deloc-loc transitions
- New results on the incorporation of stoquastic/nonstoquastic catalysts

Fundamentals.– Steered QA

arXiv:2206.07646 (to be updated)

Improve time efficiency of AQC algorithm with partial information

$$H_0^{std} = -\sum_i^N \sigma_i^x$$

$$H_0 = R_y^{\dagger}(\vec{\theta}) H_0^{std} R_y(\vec{\theta}) = \sum_i^N -[\cos{(\theta_i)}\sigma_i^x + \sin{(\theta_i)}\sigma_i^z]$$
Control over confidence in assignment $\vec{\theta} = \Theta \vec{\psi}$ recommendation / assignment / guess $\psi_i = \begin{cases} +1(-1) & \text{if spin } i \text{ is assigned upwards (downwards)} \\ 0 & \text{if there is no information on spin } i \end{cases}$

Similar proposals: Graß, PRL 123 (2019); arXiv:2205.15820

2. Resource-efficient encodings

 Need to optimise required resources if we want to tackle large problems with significantly less qubits than those required by a fault-tolerant computer

Section

2. Resource-efficient encodings.– An *heuristic* algorithm

- Image from T. Itoko et al., Optimization of quantum circuit mapping using gate transformation and commutation (2020)

2. Resource-efficient encodings.– An heuristic algorithm

for qubit allocation

2

2. Resource-efficient encodings.– An *heuristic* algorithm for qubit allocation

Does not provide an exact solution, but only a heuristic (at least for non-shallow circuits)

- Dim of the exploited Hilbert space is $d^{alg}_{H,eff} = L_v N!$
- Dim of qubit allocation is hard to assess due to dependence on problem instance, but on a rough estimate $d_H^{simp} = [\alpha(N)]^{L_v}$

$$n_{min}^{alg} = N \log_2 N + \log_2 L_v \qquad \qquad n_{min}^{simp} = L_v \log_2 \alpha(N)$$

3. Hybrid approaches

- Search for alternative, more efficient embedding schemes
- Complement the strengths of the analog model of computation with those of other models (GM, QRC)

Section

3. Hybrid approaches.– Embedding strategies for AQC

3. Hybrid approaches.– Embedding strategies for AQC

Somewhat noisy annealer chip prepares Gibbs state at some effective temperature T

$$p_D = \frac{1}{Z} e^{-\frac{H_D(\theta')}{K_B T}}$$

5. Hybrid approaches.– Embedding strategies for AQC

5. Hybrid approaches.- Embedding strategies for AQC

Somewhat noisy annealer chip prepares Gibbs state at some effective temperature T $\rho_D = \frac{1}{Z} e^{-\frac{H_D(\theta')}{K_B T}}$

Q U A N T U M · T E C H