Z,
/
=

o
:: R POLITECNICO Consiglio Nazionale
s QA 8 r delle Ricerche

Ity | ““\\\\\\\\

On the speed-up of adiabatic quantum
computers by anomaly detection on IP
traffic datasets

Quantum Computing and High Performance Computing
CINECA - 15/12/2022 — Casalecchio di Reno (BO)

Lorenzo Moro'?, Enrico Prati??

1 - POLIMI
2 - UNIMI
3 - CNR-IFN



Restricted Boltzamann Machines
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Corrupted input

Reconstructed output

Lessons from the Netflix Prize Challenge

2007

Robert M. Bell and Yehuda Kaoren

Improved traffic detection with support vector machine based
on restricted Boltzmann machine

RBMs applications: /

« Recommendation systems,

/ Jun Yang! . Jiangdong Deng' - Shujuan Li' - Yongle Hao! 30 Decl 2015
* Network Anomaly Detection,

Abnormal Traffic Pattern Detection in Real-Time

) Financial Transactions 13 Mar, 2019
* Fraud detection, ___—»

Sean Rastatter, Travis Moe, Amitava Gangopadhyay and
Alfred Weaver

* Quantum tomography,

Perspective | Published: 24 June 2019

Restricted Boltzmann machines in quantum physics

June 2019

Roger G. Melko &) Giuseppe Carleo, Juan Carrasquilla & J. Ignacio Cirac

Nature Physics 15, 887-892(2019) ‘ Cite this article
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Restricted Boltzmann Machine

Hidden units

Binary variables:
(latent space)

h={1,1}

Vi={-1,1}
Visible units Parameters (weights and biases)
(input/output) Vi V: Vs W a b
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Restricted Boltzmann Machine

Hidden units

Binary variables:
(latent space)

hj={-1,1}
Vi={-1,1}
Visible units Parameters (weights and biases)
(input/output) Vi V. Vs W a b
At each state is associated with an energy E(s) The joint probability P(v,h) is a Boltzmann distribution
—E(v,h)
E(S)=E(v,h)== 2, avi— 2. bh;=2 v,W;h, P(v.h)=<—mm
i€ visibles iEhiddenx i, \ Z e v
‘ v,h

Visible bias Hidden bias Weights
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Restricted Boltzmann Machine

Hidden units Binary variables:
(latent space)
h={-1,1}
Vi={-1,1}
Visible units Parameters (weights and biases)
(input/output) Vi V2 Vs W a b
At each state is associated with an energy E(s) The joint probability P(v,h) is a Boltzmann distribution
—E(v,h)
E(S)=E(v,h)=- Z a;v;— Z b.hj—ZviWijhj P(v,h):m
i€visibles ™ j € hidden i,j Z e
LT N
4 Visible bias Hidden bias Weights
To sample from a RBM you can:
eX
P(h=1lv)=0(b+D v;W,) P(v;=1lh)=0o(a+D h,W,) 0(x):1+ -
i i e

The goal is to train weights and biases
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Training a RBM

RBM is trained by maximizing the likelihood of training data
11(W,a,b)= >, logP(v)

vEdata
and performing gradient ascent

Z Z Vihje_E(v’H) Z Vl-hje_E(V’H)
V,1(W,a,b)= &

—E(v.H
Visible units vedata Z e EWv.H) Z
(input/output) Vi Vo Vs H

Hidden units
(latent space)
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Training a RBM

RBM is trained by maximizing the likelihood of training data
[(W,a,b)= Y. logP(v)

vEdata

Hidden units
(latent space)

and performing gradient ascent
Z Vihje—E(v,H) Z vihje—E(V,H)
_ H V,H

Visible unit Vifll(w’a’b)_ Ezd:t Ze—E(v,H) —N 7

ISiDie units vEdata

(input/output) Vi V. Vs m |
Positive phase: / Negative phase:

Very hard compute

Easy to compute o .
y P (Partition function 2)
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Training a RBM

RBM is trained by maximizing the likelihood of training data
[(W,a,b)= Y. logP(v)

vEdata

and performing gradient ascent
; vihje—E(v,H) Z Vihj e—E(V,H)

Hidden units
(latent space)

— V,H
N . Vijll(w’a’b)_ Z “E(v,H) —N 7
Visible units vEdata Z e
(input/output) Vi V> Vs N / Negative phase:
Eg:ﬂgig;;ﬁ?é Very hard compute
(Partition function Z)
Classical Training (CD-k)
Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski. "A learning algorithm for Boltzmann machines."
Vo Vi vy
) Contrastive Divergence doesn’t follow the
%‘V ) p\V/\/‘i\E/v <//7A/,, ) \?\“\/\@/’ <//7‘,,0 ) gradient of any function
0 — 0 _

Sutskever, llya, and Tijmen Tieleman. "On the convergence
properties of contrastive divergence."
h @ @ @ @ h@ @ @ @ h@ @ @ @

Still, it works fine...

>
CD-0 CD-1 CD-2

k Contrastive Divergence (CD-K) /
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Training a RBM

RBM is trained by maximizing the likelihood of training data
[(W,a,b)= Y. logP(v)

vEdata

and performing gradient ascent

Hidden units
(latent space)

V,11(W,a,b)= D 2

N V,H
. o . _E(V:H) Z
Visible units vEdata Z e
(input/output) Vi V2 Vs H .
Positive phase: / VNegﬁtlvde phase:
E ery hard compute
asy fo compute (Partition function Z)
Classical Training (CD-k) \
Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski. "A learning algorithm for Boltzmann machines."
Vo Vi vy
Contrastive Divergence doesn’t follow the
o) \ » . |
<//7A b p\V>/°v <//7A/,,0 ) 9\“\/\]‘)7 \//7A ) gradient of any function

Sutskever, llya, and Tijmen Tieleman. "On the convergence
properties of contrastive divergence."
h @ @ @ @ h@ @ @ @ h@ @ @ @

Still, it works fine...
> ill, it works fine

CD-0 CD-1 CD-2

k Contrastive Divergence (CD-K) /

RBMs classical computational cost is high!!!
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Training a QRBM

Hidden units
(latent space)

Visible units
(input/output)

RBM is trained by maximizing the likelihood of training data
[(W,a,b)= Y. logP(v)

vEdata
and performing gradient ascent

Z Vihje_E(v’H) Z Vihj e—E(V,H)

V.11(W,a,b)= < —N 2
! ( ) vezd(;ta Ze_E(VJH) Z

H

Positive phase: /

Easy to compute

Negative phase:
Very hard compute

Or we can embed the RBM on the QPU and sample the states!! \

H(t)=—F(t)(Zil B GfiZJ,--GfOi-)—I(t)Zil o

Weights Bias (= e b)
At each annealing cycle you produce samples with probability
_glw.h)
e Legy
P(V,h)zw —_»  Tercan be set

v,h
k We can estimate the negative phase at the cost of a single quantum operation! /

(Partition function Z)
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Quantum advantage

What does it mean “quantum advantage” for QRBMs?

ON THE SPEED-UP OF ADIABATIC QUANTUM COMPUTERS BY ANOMALY DETECTION ON IP TRAFFIC DATASETS L. Moro @ PoliMI - CNR 4/10



Quantum advantage

What does it mean “quantum advantage” for QRBMs?

Increase in performance metrics

44% 58%
23% 82%

11% 97%

(accuracy, reconstruction error, precision, compression ratio)

We are focusing on a classification problem, so we measured the accuracy and F1 score

2-TP TP+TN

F1= accuracy =
2:-TP+FP+FN TP+FP+FN+TN
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Quantum advantage

What does it mean “quantum advantage” for QRBMs?

Increase in performance metrics

44% 58%
23% 82%

11% 97%

WORS(:

(accuracy, reconstruction error, precision, compression ratio)

We are focusing on a classification problem, so we measured the accuracy and F1 score

2-TP TP+TN
= accuracy =
2-TP+FP+FN TP+ FP+FN+TN

Speed-up the model

Could mean reducing:

The computational complexity The computational time

|
v v

Training time Query time

Or both
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The data: real-world cybersecurity datasets

UNB

UNI HEW BRUNSWICK

Canadian Institute for Cybersecurity

a® About

Research Members Datasets Contact Us

NSL-KDD dataset

About the CIC »

L.Moro, E.Prati, “A quantum annealing restricted
boltzmann machine for cybersecurity detection
systems”, in preparation

GOAL: classify attacks from normal activities

This database contains a standard set of data to be audited, which includes a
wide variety of intrusions simulated in a military network environment.

Feature extracted Duplicates removed

DARPA

KDD99

NSL-KDD

Size reduced

Network dataset consists of seven weeks of raw TCP/IP dump files of various
attack was used against a local-area network (LAN) simulating a typical U.S. Air
Force LAN

Attacks fall into four main categories:

DoS: denial-of-service, e.g. syn flood;

R2L: unauthorized access from a remote machine, e.g. guessing password;

U2R: unauthorized access to local superuser (root) privileges, e.g., various ““buffer overflow"
probing: surveillance and other probing, e.g., port scanning.

The dataset is generated in a systematic manner. It contains detailed
descriptions of intrusions and abstract distribution models for applications,
protocols, or lower level network entities

CSE-CIC-IDS2018

Feature extracted, but no pre-processed

DoS and DDoS: denial-of-service, e.g. hulk, goldeneye ecc...;

Bruteforce attack: e.g. guessing password,;

Web attack: In-house selenium framework; Damn Vulnerable Web App;
Botnet attack: Zeus, which is a Trojan horse malware package for Windows

Canadian Institute for Cybersecurity

' About

Research Members Datasets Contact Us

CSE-CIC-IDS2018 on AWS

About the CIC »
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Increase in performance

Average RBM
performance

NSL-KDD CSE-CIC-IDS2018
Accuracy False Positive Rate Accuracy False Positive Rate
94% 2% 92% 7%
QRBM 94% 9% 85% 16%

Visible units: 85 and 156

Hidden units: 30 and 90 Training epochs: 2000

QRBM # samples: 100

L.Moro, E.Prati, “On the speed-up of adiabatic
quantum computers by anomaly detection of IP
traffic”, in preparation

QRBMs have roughly the same performace of RBMs

However, usally classical RBM performs better (quantum hardware issue?)

The only difference between a RBM and QRBM is the training procedure. In particular how the
negative phase is evaluated. However:

* The contrastive divergence (CD-k) procedure works surprisingly well if k>>1
* The quantum sampling is better, but needs an ideal quantum annealer (no environment
coupling, complete superposition, H implemented exactly, no errors)

Carreira-Perpinan, Miguel A., and Geoffrey Hinton. "On contrastive
divergence learning." International workshop on artificial
intelligence and statistics. PMLR, 2005.
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Hidden units: 30 and 90 Training epochs: 2000
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quantum computers by anomaly detection of IP
traffic”, in preparation

QRBMs have roughly the same performace of RBMs

However, usally classical RBM performs better (quantum hardware issue?)

The only difference between a RBM and QRBM is the training procedure. In particular how the
negative phase is evaluated. However:

* The contrastive divergence (CD-k) procedure works surprisingly well if k>>1
* The quantum sampling is better, but needs an ideal quantum annealer (no environment
coupling, complete superposition, H implemented exactly, no errors)

We achieved the same performance by employing 1 CD-k step and extracting 10 quantum samples from the QPU!!

Carreira-Perpinan, Miguel A., and Geoffrey Hinton. "On contrastive
divergence learning." International workshop on artificial
intelligence and statistics. PMLR, 2005.
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Computational complexity

The computational complexity represent the the number of operation to perform to complete the computation.

ive di i - RBM complexity ~ O(N - K
Contrastive divergence procedure scales linearly in the number of plexity ~ O( )

RBM units N (visible + hidden) and in the number of CD-K steps Rocutto, L., Destri, C. & Prati, E. Quantum semantic learning by reverse annealing

of an adiabatic quantum computer. Adv. Quantum Technol. (2021).
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Computational complexity

The computational complexity represent the the number of operation to perform to complete the computation.

Contrastive divergence procedure scales linearly in the number of
RBM units N (visible + hidden) and in the number of CD-K steps

RBM complexity ~ O(N - K)

of an adiabatic quantum computer. Adv. Quantum Technol. (2021).

Rocutto, L., Destri, C. & Prati, E. Quantum semantic learning by reverse annealing

QRBM

Samples A'LXQ/.\’“{)/ -
[ ] . \ . . .
0 0.3 10 (‘oj T Ideally, qguantum sampling scales linearly in the number of samples
£ * 100 Phy extracted (S) but doesn't depend on the QRBM size
e + 1000 o
0 0.2 X . . . .
g ' o2nes However AQC are physical devices restrained by technological
IS ot and engineering constraint
> XA
o 61 Pe
< QRBM complexity ~ O(N - S)
y=51:105z+0024 1
2029 Y =__5.1_-10__f:1:i0.g6
0.0 . . - -
100 200 300 400 500
# units

\

Classical and quantum machines have the same computational complexity
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Computational Times

k=100

\ N
v \, ¥4
"o |1\ . %0

250
225
200

175
150

a 125
100
75
50
25

10t

SI ngle core CPU L.Moro, E.Prati, “On the speed-up of adiabatic

quantum computers by anomaly detection of IP

Lo° times traffic”, in preparation

Classic times depend on the number of contrastive
divergence steps (K) and number of qubits involved

10*

en units

L 250
D225
200
175
150

b 125
100
75
50
25

Execution time (s)

102

128 cores CPU
10% times

: 10
o n O un
N N~
Visible units

o2
25
50
75

100
125
150
175
200
225
250

0
25
50
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100
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Computational Times

250
225
200

175
150

a 125
100

75

k=100

2,

N

10t

10°

Single core CPU
times

L.Moro, E.Prati, “On the speed-up of adiabatic
quantum computers by anomaly detection of IP

traffic”, in preparation

2 50 Y
T 25 E . .
z o 10° ¢ Classic times depend on the number of contrastive
(] . - .
B oo = divergence steps (K) and number of qubits involved
200 %
175 102 W
b 12 128 cores CPU
100 10° times
75
50
25
\00momomomomoomomomomomoom 10 /
Visible units
samples=10 samples=100 QRBM
250
200 @ Advantage 4.1 QPU
81751 0-20 E times
S 150 0
c 15 ] 0.15 &
() O .
S 100+ 0.10 s Quantum times depend on the number of
T 759 77 2 sample extracted and number of qubits
501 0.05 & involved
251
o wmomonomo o
NN ™~NONWLNS~NSON W,
N = = A N N N
k Visible units j
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Computational Times

250 k=100 ] k=1000 ~
525 \ \\z;’.e \\ 32 \\%9\
200 : ER \ 24 k)
175 1. S 10!
150 Single core CPU L.Moro, E.Prati, “On the speed-up of adiabatic
a 125 . quantum computers by anomaly detection of IP
100 10° times traffic”, in preparation
75 | wn
2 50 1 :
c 25 ‘ £ .. .
z o B 10° ¢ Classic times depend on the number of contrastive
(] . - .
B oo s divergence steps (K) and number of qubits involved
200 %
175 107 ™
b 12 128 cores CPU
100 10° times
;g ® CSE-CIC-IDS2018
25 @® NSL-KDD
OO N O NnNnowmomnNOoONOoOOoONONOoOnNmOoOnmo n oo un 104
\ Visible units /
samples=10 samples=100 samples=1000 QRBM
250
0.25 —
2251 n
200 @ Advantage 4.1 QPU
81751 0-20 E times
S 1501 o1s 2
$ 125 : - e _
S 100+ ] i 0.10 s Quantum times depend on the number of
+ 75 1 0 77 2 sample extracted and number of qubits
501 g} \ 0.05 o involved
25 1
R O OO MO CMOMO OO d CING NSNS hd RS
o N O AN INM~SO N N NN ~NO NINMS~SON N NN ~NONWILMNSNSON W,
N = = A N N N — — = A N N (N N = = A N N N
k Visible units Visible units Visible units j
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Computational Times

e

Single core CPU sttt 8
\ tmes e

. Classic tmes depend on the number of contrastive
dver gence steps (K) and number of Qubits involved
128 cores CPU
nmes
® CSECKIDS2018

@® NSL XDOD

The quantum speed-up is problem-dependent. It could emerge only for sufficiently large
RBM or for tasks that require a high number of Gibbs steps.

-ri""‘ [ 1 i II,:I‘ o 1 LML)

~

. Advantage 41 QPU

3 Quantum tmes depend on the number of
sample extracted and number of guitsts
Nl ved

Y,
=
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Inference Times

Dataset k Accuracy F1 TP FP FN TN

1 0.906+0.005 0.901+£0.005 0.909+0.009 0.091£0.009 0.096+0.005 0.903 +0.005

NSL-KDD 10 0.935+0.002 0.932+£0.002 0.936+0.003 0.064+£0.003 0.065+=0.003 0.935+0.003

100 0.937+£0.002 0.934+£0.002 0.939+0.004 0.061£0.004 0.064£0.001 0.935+0.001

1000  0.938+0.002 0.935£0.002 0.979+0.002 0.020£0.003 0.064£0.002 0.936+0.002

1 0.800+=0.004 0.805+0.005 0.833£0.003 0.166+0.004 0.2344+0.006 0.766 +=0.006

CSE-CIC-IDS2018 10 0.897+0.001 0.903+0.001 0.907£0.002 0.093+£0.002 0.1134+0.002 0.887 +=0.002
100 0.915£0.001 0.921£0.001 0.922+0.003 0.078 =£0.003 0.092£0.001 0.907 +=0.001

1000  0.924+0.001 0.929£0.001 0.932+0.001 0.068+0.002 0.084+0.001 0.916+0.001

The number of CD steps during inference
hugely affect the performance of the model

During the training it is ok having
a noisy gradient ascent step

L.Moro, E.Prati, “On the speed-up of adiabatic
quantum computers by anomaly detection of IP
traffic”, in preparation

To maximize the performance we need to perform CD-10 and CD-
100 on the NSL-KDD and CSE-CIC_IDS2018 datasets, respectively
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Inference Times

Dataset k Accuracy F1 TP FP FN TN . .
The number of CD steps during inference
1 0.906 £0.005 0.901£0.005 0.909+£0.009 0.091+0.009 0.096£0.005 0.903 £0.005 hugely affect the performance of the model
NSL-KDD 10 0.935+0.002 0.9324+0.002 0.9364+0.003 0.064+£0.003 0.065+£0.003 0.935+0.003
100 0.937+0.002 0.9344+0.002 0.9394+0.004 0.061£0.004 0.064+£0.001 0.935+0.001 During the training it is ok having
1000  0.9384£0.002 0.935£0.002 0.979+£0.002 0.020+£0.003 0.064+0.002 0.93640.002 a noisy gradient ascent step
1 0.8004+0.004 0.805+0.005 0.8334+0.003 0.166+0.004 0.234+0.006 0.766+0.006 | Moro. £ pratt “On th i of adiah
.Moro, E.Prati, “On the speed-up of adiabatic
CSE.CICIDS201g 10 0-897:£0.001  0.903£0.001 0.90740.002  0.093£0.002  0.113:£0.002  0.887:0.002 At compLters by anemal, detection of P
100 0.915+0.001 0.9210.001 0.92240.003 0.078£0.003 0.092£0.001 0.907 £0.001 traffic”, in preparation
1000 0.924£0.001 0.929+£0.001 0.932+£0.001 0.0680.002 0.084+=0.001 091640.001
P To maximize the performance we need to perform CD-10 and CD-
k=100 k=1000 Y4 samples=10 100 on the NSL-KDD and CSE-CIC_IDS2018 datasets, respectively
2251 \ \ %, 2251 \ \
200 S R N 200 % Dataset Processor  k Computational Time  Speed-up
$1751 L = 81751 : _
I= = Singlecore 100 1.1s 64x
= 130/ ’ = 130/ CSE-CIC-IDS2018 128 cores 100 0.71's 41x
@ 1257 8, @ 1251 QPU 10 0017s 1x
S 100+ ° S 100 :
T 75) T 75 Single core 10 0.070 s 4x
=o.IB =0 NSL-KDD 128 cores 10 0.035s 2x
l ° QPU 10 0.016s 1x
251 25 1
CARRSAARSAR CARRS8NARSAR SARRSIRR3dnA
H o dd NN N H A A4 NN N oA A AN NN
Visible units Visible units Visible units ® CSE-CIC-IDS2018
- VAN J ® NSL-KDD
We detected a quantum speedup in the query time
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However...

Cloud latency " QpU |

QRBMs are inferred on the cloud Cloud

Y YT

N

[
CPU Internet latency A

RBMs are inferred locally
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However...

Cloud latency " QpU |

QRBMs are inferred on the cloud Cloud

YT

4 r:\\\

| 3‘

CPU Internet latency . A

. \ AN /

RBMs are inferred locally - \
L

“Single core” QPU

The QPU have to process on data at the time
The CPU can process data in batches

Data Data /
H N E EE
H BN
m [ | DDD
[ I B " M |
'S
A
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CONCLUSION

We trained RBM and QRBM on two real-world cybersecurity
datasets

QRBMs doesn't present a computational complexity advantage QRBMs haven't showen better performance than RBMs on the task
on current quantum hardware (connettivity problem) (no increase in accuracy/F1)

. RBMs training is not faster on quantum computer
The quantum speed-up is problem dependent g . . q P
(contrastive divergence works well)

Next week on Arxiv:

We measured a quantum speed-up! L.Moro, E.Prati, “On the speed-up of adiabatic
(QRBMs have a shorter inference time) guantum computers by anomaly detection of
IP traffic”, in preparation

However:
1) cloud latancy prevents small models from a quantum advantage

2) QPU cannot process batch of data
3) can we lower the quantum computational complexity improving qubit connectivity?

Contact:
enrico.prati@unimi.it

This work was partially founded by Vista Technology
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The quantum speed-up is problem dependent g . . q P
(contrastive divergence works well)

Next week on Arxiv:

We measured a quantum speed-up! L.Moro, E.Prati, “On the speed-up of adiabatic
(QRBMs have a shorter inference time) guantum computers by anomaly detection of
IP traffic”, in preparation

However:

1) cloud latancy prevents small models from a quantum advantage

2) QPU cannot process batch of data

3) can we lower the quantum computational complexity improving qubit connectivity?

THANK YOU
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enrico.prati@unimi.it
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