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Restricted Boltzamann Machines

• Recommendation systems,

• Network Anomaly Detection,

• Fraud detection,

• Quantum tomography,

• …

30 Dec, 2015

2007

13 Mar, 2019

June 2019

Restricted Boltzmann MachinesRestricted Boltzmann MachinesRestricted Boltzmann Machines Generative neural network models

Dataset RBM
Corrupted input Reconstructed output
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RBMs applications:



  

Restricted Boltzmann Machine
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b
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h1 h2 h3 h3 
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Visible units
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Hidden units
(latent space)

At each state is associated with an energy E(s) The joint probability P(v,h) is a Boltzmann distribution 
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Restricted Boltzmann Machine
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V1 V2 V3

h1 h2 h3 h3 

Wij 

Visible units
(input/output)

Hidden units
(latent space)

The goal is to train weights and biases 

At each state is associated with an energy E(s) The joint probability P(v,h) is a Boltzmann distribution 

E (S)=E (v ,h)=− ∑
i∈visibles

ai vi− ∑
j∈hidden

b jh j−∑
i , j

v iW ijh j P(v ,h)= e−E(v , h)

∑
v ,h

e−E (v , h)

To sample from a RBM you can:

P(h j=1∣v )=σ(b j+∑
j

v jW ij) P(v i=1∣h)=σ(ai+∑
i

hiW ij) σ (x )= ex

1+ex

Vi = {-1,1}

hj = {-1,1}

Parameters (weights and biases)

W a

Binary variables:

b

Visible bias Hidden bias Weights
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Training a RBM
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RBM is trained by maximizing the likelihood of training data

V1 V2 V3
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log P(v )
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v ih j e
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e−E (v ,H ) −N
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V , H

v ih j e
−E (V ,H )
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 and performing gradient ascent
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Easy to compute
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(Partition function Z)
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CD-0 CD-1 CD-2

Positive phase:
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P (h∣v
0 )

v0

h0

P (v∣h 0) P(h∣v
0 )

P(h∣v
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 and performing gradient ascent

Contrastive Divergence doesn’t follow the 
gradient of any function

v1 v2

h1 h2

Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski. "A learning algorithm for Boltzmann machines."

Sutskever, Ilya, and Tijmen Tieleman. "On the convergence 
properties of contrastive divergence."

Still, it works fine...
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Classical Training (CD-k)

Contrastive Divergence (CD-K)
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Training a RBM
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RBMs classical computational cost is high!!!

RBM is trained by maximizing the likelihood of training data
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Classical Training (CD-k)

Contrastive Divergence (CD-K)
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Training a QRBM
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Or we can embed the RBM on the QPU and sample the states!!

H ( t)=−F ( t)(∑
i

Bi σ i
z∑

i , j
J ijσ i

zσ j
z)−I ( t)∑

i
σ i

x

Weights Bias (a e b)

At each annealing cycle you produce samples with probability 

P(v ,h)= e
−E (v , h)

teff

∑
v ,h

e
−E

(v , h)
t eff

Teff can be set

3/10

Quantum Training

V1 V2 V3

h1 h2 h3 h3 

Wij 

Visible units
(input/output)

Hidden units
(latent space)

We can estimate the negative phase at the cost of a single quantum operation!
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RBM is trained by maximizing the likelihood of training data
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(Partition function Z)

 and performing gradient ascent



  

Quantum advantage

L. Moro @ PoliMI - CNR

What does it mean “quantum advantage” for QRBMs?
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Quantum advantage

L. Moro @ PoliMI - CNR

We are focusing on a classification problem, so we measured the accuracy and F1 score

What does it mean “quantum advantage” for QRBMs?

F 1= 2⋅TP
2⋅TP+FP+FN

accuracy= TP+TN
TP+FP+FN +TN

4/10

Increase in performance metrics 

(accuracy, reconstruction error, precision, compression ratio)
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We are focusing on a classification problem, so we measured the accuracy and F1 score

What does it mean “quantum advantage” for QRBMs?

F 1= 2⋅TP
2⋅TP+FP+FN

accuracy= TP+TN
TP+FP+FN +TN

Could mean reducing:

Or both
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Increase in performance metrics 

(accuracy, reconstruction error, precision, compression ratio)

Speed-up the model

The computational complexity The computational time

Training time Query time
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The data: real-world cybersecurity datasets
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This database contains a standard set of data to be audited, which includes a 
wide variety of intrusions simulated in a military network environment. 

DARPA KDD99 NSL-KDD

Network dataset consists of seven weeks of raw TCP/IP dump files of various 
attack was used against a local-area network (LAN) simulating a typical U.S. Air 
Force LAN

Feature extracted Duplicates removed

Size reduced

Attacks fall into four main categories:
DoS: denial-of-service, e.g. syn flood;
R2L: unauthorized access from a remote machine, e.g. guessing password;

probing: surveillance and other probing, e.g., port scanning.
U2R:  unauthorized access to local superuser (root) privileges, e.g., various ``buffer overflow''

CSE-CIC-IDS2018

The dataset is generated in a systematic manner. It contains detailed 
descriptions of intrusions and abstract distribution models for applications, 
protocols, or lower level network entities

DoS and DDoS: denial-of-service, e.g. hulk, goldeneye ecc...;
Bruteforce attack: e.g. guessing password;

Botnet attack: Zeus, which is a Trojan horse malware package for Windows
Web attack:  In-house selenium framework; Damn Vulnerable Web App;

Feature extracted, but no pre-processed

5/10

L.Moro, E.Prati, “A quantum annealing restricted 
boltzmann machine for cybersecurity detection 
systems”, in preparation

GOAL: classify attacks from normal activities
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Increase in performance
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RBM

QRBM

 

NSL-KDD

94% 2%

CSE-CIC-IDS2018

94% 5%

Average 
performance

The only difference between a RBM and QRBM is the training procedure. In particular how the 
negative phase is evaluated. However:

● The contrastive divergence (CD-k) procedure works surprisingly well if k>>1
● The quantum sampling is better, but needs an ideal quantum annealer (no environment 

coupling, complete superposition, H implemented exactly, no errors) Carreira-Perpinan, Miguel A., and Geoffrey Hinton. "On contrastive 
divergence learning." International workshop on artificial 
intelligence and statistics. PMLR, 2005.

6/10

Accuracy False Positive Rate Accuracy False Positive Rate

92% 7%

85% 16%

Average 
performance

QRBMs have roughly the same performace of RBMs
However, usally classical RBM performs better (quantum hardware issue?)
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L.Moro, E.Prati, “On the speed-up of adiabatic 
quantum computers by anomaly detection of IP 
traffic”, in preparation

RBM

Hidden units: 30 and 90

CD-K: 300

Training epochs: 2000

QRBM # samples: 100

Visible units: 85 and 156
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Accuracy False Positive Rate Accuracy False Positive Rate

92% 7%

85% 16%

Average 
performance

RBM

Hidden units: 30 and 90

CD-K: 300

Training epochs: 2000

QRBM # samples: 100

QRBMs have roughly the same performace of RBMs
However, usally classical RBM performs better (quantum hardware issue?)

We achieved the same performance by employing 1 CD-k step and extracting 10 quantum samples from the QPU!!

Visible units: 85 and 156
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Computational complexity
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RBM

Contrastive divergence procedure scales linearly in the number of 
RBM units N (visible + hidden) and in the number of CD-K steps 

The computational complexity represent the the number of operation to perform to complete the computation.

Rocutto, L., Destri, C. & Prati, E. Quantum semantic learning by reverse annealing 
of an adiabatic quantum computer. Adv. Quantum Technol.  (2021).

RBM complexity ~ O(N ∙ K)
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Computational complexity
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QRBM

RBM

Contrastive divergence procedure scales linearly in the number of 
RBM units N (visible + hidden) and in the number of CD-K steps 

Ideally, quantum sampling scales linearly in the number of samples 
extracted (S) but doesn't depend on the QRBM size

However AQC are physical devices restrained by technological 
and engineering constraint

The computational complexity represent the the number of operation to perform to complete the computation.

Rocutto, L., Destri, C. & Prati, E. Quantum semantic learning by reverse annealing 
of an adiabatic quantum computer. Adv. Quantum Technol.  (2021).

RBM complexity ~ O(N ∙ K)

QRBM complexity ~ O(N ∙ S)

Classical and quantum machines have the same computational complexity
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Computational Times
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Classic times depend on the number of contrastive 
divergence steps (K) and number of qubits involved

8/10

Single core CPU
times

RBM

128 cores CPU
times

L.Moro, E.Prati, “On the speed-up of adiabatic 
quantum computers by anomaly detection of IP 
traffic”, in preparation
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Computational Times
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Quantum times depend on the number of 
sample extracted and number of qubits 

involved

Classic times depend on the number of contrastive 
divergence steps (K) and number of qubits involved

8/10

Single core CPU
times

Advantage 4.1 QPU
times

RBM

QRBM

128 cores CPU
times

L.Moro, E.Prati, “On the speed-up of adiabatic 
quantum computers by anomaly detection of IP 
traffic”, in preparation
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Single core CPU
times

Advantage 4.1 QPU
times

RBM

QRBM

128 cores CPU
times

CSE-CIC-IDS2018
NSL-KDD

L.Moro, E.Prati, “On the speed-up of adiabatic 
quantum computers by anomaly detection of IP 
traffic”, in preparation
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The quantum speed-up is problem-dependent. It could emerge only for sufficiently large 
RBM or for tasks that require a high number of Gibbs steps.



  

Inference Times
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The number of CD steps during inference 
hugely affect the performance of the model

During the training it is ok having 
a noisy gradient ascent step

L.Moro, E.Prati, “On the speed-up of adiabatic 
quantum computers by anomaly detection of IP 
traffic”, in preparation

To maximize the performance we need to perform CD-10 and CD-
100 on the NSL-KDD and CSE-CIC_IDS2018 datasets, respectively
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a noisy gradient ascent step
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Classic Time Quantum Time

We detected a quantum speedup in the query time 
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To maximize the performance we need to perform CD-10 and CD-
100 on the NSL-KDD and CSE-CIC_IDS2018 datasets, respectively



  

However...
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QPU

10/10

Data Data

Cloud

Internet latency

Client

Cloud latency

RBMs are inferred locally 

QRBMs are inferred on the cloud 

CPU

QPU
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However...
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QPU

The CPU can process data in batches

QPU

10/10

Data Data

Cloud

Internet latency

Client

Cloud latency

“Single core” QPU

RBMs are inferred locally 

QRBMs are inferred on the cloud 

Data

The QPU have to process on data at the time

Data

CPU

QPU
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CONCLUSION

However: 
1) cloud latancy prevents small models from a quantum advantage
2) QPU cannot process batch of data
3) can we lower the quantum computational complexity improving qubit connectivity?

Next week on Arxiv:
L.Moro, E.Prati, “On the speed-up of adiabatic 
quantum computers by anomaly detection of 

IP traffic”, in preparation

We trained RBM and QRBM on two real-world cybersecurity 
datasets

QRBMs doesn’t present a computational complexity advantage
on current quantum hardware (connettivity problem)

QRBMs haven't showen better performance than RBMs on the task 
(no increase in accuracy/F1)

RBMs training is not faster on quantum computer
(contrastive divergence works well)

We measured a quantum speed-up!
(QRBMs have a shorter inference time) 

Contact: 
enrico.prati@unimi.it

The quantum speed-up is problem dependent

This work was partially founded by Vista Technology
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THANK YOU
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