

On the speed-up of adiabatic quantum computers by anomaly detection on IP traffic datasets

Quantum Computing and High Performance Computing CINECA – 15/12/2022 – Casalecchio di Reno (BO)

Lorenzo Moro^{1,3}, Enrico Prati^{2,3}

1 – POLIMI 2 – UNIMI 3 – CNR-IFN

Restricted Boltzamann Machines

Restricted Boltzmann Machines

Generative neural network models

ON THE SPEED-UP OF ADIABATIC QUANTUM COMPUTERS BY ANOMALY DETECTION ON IP TRAFFIC DATASETS

Restricted Boltzmann Machine

Restricted Boltzmann Machine

At each state is associated with an energy E(s)

The joint probability P(v,h) is a Boltzmann distribution

$$E(S) = E(v, h) = -\sum_{i \in visibles} \underbrace{a_i v_i}_{j \in hidden} \underbrace{b_j h_j}_{j \in hidden} \underbrace{b_j h_j}_{Visible bias} \underbrace{v_i W_{ij} h_j}_{Visible bias} Weights P(v, h) = \frac{e^{-E(v, h)}}{\sum_{v, h} e^{-E(v, h)}}$$

Visible bias

Restricted Boltzmann Machine

At each state is associated with an energy E(s)

 $E(S) = E(v, h) = -\sum_{i \in visibles} \underline{a_i} v_i - \sum_{j \in hidden} \underline{b_j} h_j - \sum_{i, j} v_i \underline{W_{ij}} h_j$

The joint probability P(v,h) is a Boltzmann distribution

$$P(v,h) = \frac{e^{-E(v,h)}}{\sum_{v,h} e^{-E(v,h)}}$$

$$P(h_j=1|v) = \sigma(b_j + \sum_j v_j W_{ij}) \qquad P(v_i=1|h) = \sigma(a_i + \sum_i h_i W_{ij}) \qquad \sigma(x) = \frac{e^x}{1 + e^x}$$

Weights

Hidden bias

The goal is to train weights and biases

Visible bias

RBM is trained by maximizing the likelihood of training data

$$ll(W, a, b) = \sum_{v \in data} \log P(v)$$

and performing gradient ascent

$$\nabla_{ij} ll(W, a, b) = \sum_{v \in data} \frac{\sum_{H} v_i h_j e^{-E(v, H)}}{\sum_{H} e^{-E(v, H)}} - N \frac{\sum_{V, H} v_i h_j e^{-E(V, H)}}{Z}$$

RBM is trained by maximizing the likelihood of training data

$$ll(W, a, b) = \sum_{v \in data} \log P(v)$$

and performing gradient ascent

RBMs classical computational cost is high!!!

Quantum advantage

What does it mean "quantum advantage" for QRBMs?

Quantum advantage

What does it mean "quantum advantage" for QRBMs?

ON THE SPEED-UP OF ADIABATIC QUANTUM COMPUTERS BY ANOMALY DETECTION ON IP TRAFFIC DATASETS

Quantum advantage

What does it mean "quantum advantage" for QRBMs?

Speed-up the model

Could mean reducing:

ON THE SPEED-UP OF ADIABATIC QUANTUM COMPUTERS BY ANOMALY DETECTION ON IP TRAFFIC DATASETS

The data: real-world cybersecurity datasets

UNIVERSITY OF NEW BRUNSWICK										
Canadio	Canadian Institute for Cybersecurity									
*	About	Research	Members	Datasets	Contact Us					
CIC	ut the CIC >		NSL-ł	KDD d	ataset					

GOAL: classify attacks from normal activities

L.Moro, E.Prati, "A quantum annealing restricted boltzmann machine for cybersecurity detection systems", in preparation This database contains a standard set of data to be audited, which includes a wide variety of intrusions simulated in a military network environment.

Network dataset consists of seven weeks of raw TCP/IP dump files of various attack was used against a local-area network (LAN) simulating a typical U.S. Air Force LAN

Attacks fall into four main categories:

DoS: denial-of-service, e.g. syn flood;

R2L: unauthorized access from a remote machine, e.g. guessing password;

U2R: unauthorized access to local superuser (root) privileges, e.g., various ``buffer overflow" **probing:** surveillance and other probing, e.g., port scanning.

The dataset is generated in a systematic manner. It contains detailed descriptions of intrusions and abstract distribution models for applications, protocols, or lower level network entities

CSE-CIC-IDS2018

Feature extracted, but no pre-processed

DoS and DDoS: denial-of-service, e.g. hulk, goldeneye ecc...;

Bruteforce attack: e.g. guessing password;

Web attack: In-house selenium framework; Damn Vulnerable Web App; **Botnet attack:** Zeus, which is a Trojan horse malware package for Windows

Increase in performance

						visible utilits.	05 anu 150		
	_	NS	SL-KDD	CSE-C	IC-IDS2018	Hidden units:	: 30 and 90	Training	epochs: 2000
		Accuracy	False Positive Rate	Accuracy	False Positive Rate	RBM	CD-K· 3	800	
Average	RBM	94%	2%	92%	7%	ORBM	# sample	s: 100	
performance	QRBM	94%	5%	85%	16%	L.Moro, E.Pro quantum con traffic", in pro	L.Moro, E.Prati, "On the speed-up of adiabatic quantum computers by anomaly detection or traffic", in preparation		1
					(

QRBMs have roughly the same performace of RBMs However, usally classical RBM performs better (quantum hardware issue?)

The only difference between a RBM and QRBM is the training procedure. In particular how the negative phase is evaluated. However:

- The contrastive divergence (CD-k) procedure works surprisingly well if k>>1
- The quantum sampling is better, but needs an ideal quantum annealer (no environment coupling, complete superposition, H implemented exactly, no errors)

Carreira-Perpinan, Miguel A., and Geoffrey Hinton. "On contrastive divergence learning." International workshop on artificial intelligence and statistics. PMLR, 2005.

Visible unite: 95 and 156

Increase in performance

						visible units.	65 anu 150		
	_	NS	L-KDD	CSE-C	IC-IDS2018	Hidden units:	30 and 90	Training epoch	ıs: 2000
		Accuracy	False Positive Rate	Accuracy	False Positive Rate	RBM	CD-K· 3	00	
Average	RBM	94%	2%	92%	7%	OPRM	# camples	× 100	
performance	QRBM	94%	5%	85%	16%	L.Moro, E.Pra quantum con traffic", in pre	# Samples ati, "On the speed-up nputers by anomaly eparation	o of adiabatic detection of IP	

QRBMs have roughly the same performace of RBMs However, usally classical RBM performs better (quantum hardware issue?)

The only difference between a RBM and QRBM is the training procedure. In particular how the negative phase is evaluated. However:

- The contrastive divergence (CD-k) procedure works surprisingly well if k>>1
- The quantum sampling is better, but needs an ideal quantum annealer (no environment coupling, complete superposition, H implemented exactly, no errors)

Carreira-Perpinan, Miguel A., and Geoffrey Hinton. "On contrastive divergence learning." International workshop on artificial intelligence and statistics. PMLR, 2005.

We achieved the <u>same performance</u> by employing <u>1 CD-k step</u> and extracting <u>10 quantum samples</u> from the QPU!!

Minible uniter OF and 4FC

Computational complexity

The computational complexity represent the the number of operation to perform to complete the computation.

Computational complexity

The computational complexity represent the the number of operation to perform to complete the computation.

Classical and quantum machines have the same computational complexity

ON THE SPEED-UP OF ADIABATIC QUANTUM COMPUTERS BY ANOMALY DETECTION ON IP TRAFFIC DATASETS

ON THE SPEED-UP OF ADIABATIC QUANTUM COMPUTERS BY ANOMALY DETECTION ON IP TRAFFIC DATASETS

QUANTUM SPEEDUP FOR CYBERSECURITY ANOMALY DETECTION BY QUANTUM RESTRICTED BOLTZMANN MACHINE

L. Moro @ PoliMI - CNR

12/16

Inference Times

Dataset	k	Accuracy	F1	ТР	FP	FN	TN
	1	0.906 ± 0.005	0.901 ± 0.005	0.909 ± 0.009	0.091 ± 0.009	0.096 ± 0.005	0.903 ± 0.005
NGL KDD	10	0.935 ± 0.002	0.932 ± 0.002	0.936 ± 0.003	0.064 ± 0.003	0.065 ± 0.003	0.935 ± 0.003
INSL-KDD	100	0.937 ± 0.002	0.934 ± 0.002	0.939 ± 0.004	0.061 ± 0.004	0.064 ± 0.001	0.935 ± 0.001
	1000	0.938 ± 0.002	0.935 ± 0.002	0.979 ± 0.002	0.020 ± 0.003	0.064 ± 0.002	0.936 ± 0.002
	1	0.800 ± 0.004	0.805 ± 0.005	0.833 ± 0.003	0.166 ± 0.004	0.234 ± 0.006	0.766 ± 0.006
CSE CIC IDS2018	10	0.897 ± 0.001	0.903 ± 0.001	0.907 ± 0.002	0.093 ± 0.002	0.113 ± 0.002	0.887 ± 0.002
CSE-CIC-ID52016	100	0.915 ± 0.001	0.921 ± 0.001	0.922 ± 0.003	0.078 ± 0.003	0.092 ± 0.001	0.907 ± 0.001
	1000	0.924 ± 0.001	0.929 ± 0.001	0.932 ± 0.001	0.068 ± 0.002	0.084 ± 0.001	0.916 ± 0.001

The number of CD steps during inference hugely affect the performance of the model

During the training it is ok having a noisy gradient ascent step

L.Moro, E.Prati, "On the speed-up of adiabatic quantum computers by anomaly detection of IP traffic", in preparation

To maximize the performance we need to perform CD-10 and CD-100 on the NSL-KDD and CSE-CIC_IDS2018 datasets, respectively

Inference Times

Dataset	k	Accuracy	F 1	ТР	FP	FN	TN
	1	0.906 ± 0.005	0.901 ± 0.005	0.909 ± 0.009	0.091 ± 0.009	0.096 ± 0.005	0.903 ± 0.005
NGL KDD	<u>10</u>	0.935 ± 0.002	0.932 ± 0.002	0.936 ± 0.003	0.064 ± 0.003	0.065 ± 0.003	0.935 ± 0.003
INSL-KDD	100	0.937 ± 0.002	0.934 ± 0.002	0.939 ± 0.004	0.061 ± 0.004	0.064 ± 0.001	0.935 ± 0.001
	1000	0.938 ± 0.002	0.935 ± 0.002	0.979 ± 0.002	0.020 ± 0.003	0.064 ± 0.002	0.936 ± 0.002
	1	0.800 ± 0.004	0.805 ± 0.005	0.833 ± 0.003	0.166 ± 0.004	0.234 ± 0.006	0.766 ± 0.006
CSE CIC IDS2018	10	0.897 ± 0.001	0.903 ± 0.001	0.907 ± 0.002	0.093 ± 0.002	0.113 ± 0.002	0.887 ± 0.002
C3E-CIC-ID32018	100	0.915 ± 0.001	0.921 ± 0.001	0.922 ± 0.003	0.078 ± 0.003	0.092 ± 0.001	0.907 ± 0.001
	1000	0.924 ± 0.001	0.929 ± 0.001	0.932 ± 0.001	0.068 ± 0.002	0.084 ± 0.001	0.916 ± 0.001

The number of CD steps during inference hugely affect the performance of the model

During the training it is ok having a noisy gradient ascent step

L.Moro, E.Prati, "On the speed-up of adiabatic quantum computers by anomaly detection of IP traffic", in preparation

To maximize the performance we need to perform CD-10 and CD-100 on the NSL-KDD and CSE-CIC_IDS2018 datasets, respectively

Dataset	Processor	k	Computational Time	Speed-up
CSE-CIC-IDS2018	Single core 128 cores QPU	100 100 10	1.1 s 0.71 s 0.017 s	64 <i>x</i> 41 <i>x</i> 1 <i>x</i>
NSL-KDD	Single core 128 cores QPU	10 10 10	0.070 s 0.035 s 0.016 s	$ \begin{array}{c} 4x \\ 2x \\ 1x \end{array} $

CSE-CIC-IDS2018

NSL-KDD

We detected a quantum speedup in the query time

However...

However...

"Single core" QPU

The QPU have to process on data at the time

CONCLUSION

We trained RBM and QRBM on two real-world cybersecurity datasets

QRBMs doesn't present a computational complexity advantage on current quantum hardware (connettivity problem)

The quantum speed-up is problem dependent

QRBMs haven't showen better performance than RBMs on the task (no increase in accuracy/F1)

RBMs training is not faster on quantum computer (contrastive divergence works well)

We measured a quantum speed-up! (QRBMs have a shorter inference time)

However:

1) cloud latancy prevents small models from a quantum advantage

2) QPU cannot process batch of data

3) can we lower the quantum computational complexity improving qubit connectivity?

Next week on Arxiv:

L.Moro, E.Prati, "On the speed-up of adiabatic quantum computers by anomaly detection of IP traffic", in preparation

CONCLUSION

We trained RBM and QRBM on two real-world cybersecurity datasets

QRBMs doesn't present a computational complexity advantage on current quantum hardware (connettivity problem)

The quantum speed-up is problem dependent

QRBMs haven't showen better performance than RBMs on the task (no increase in accuracy/F1)

RBMs training is not faster on quantum computer (contrastive divergence works well)

We measured a quantum speed-up! (QRBMs have a shorter inference time)

However:

1) cloud latancy prevents small models from a quantum advantage

2) QPU cannot process batch of data

3) can we lower the quantum computational complexity improving qubit connectivity?

THANK YOU

Contact: enrico.prati@unimi.it

Next week on Arxiv: L.Moro, E.Prati, "On the speed-up of adiabatic quantum computers by anomaly detection of IP traffic", in preparation