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Figure 1. Markov dynamics of a quantum spin chain on the level of local tensors. a) shows the relationship between a density matrix ⇢ in
MPO representation (top) and the locally purified tensor network (bottom) with tensors Al, physical dimension d, bond dimension D0 and
Kraus dimension K. b) The action of a local channel T that exclusively acts on lattice site 2 on the level of the MPO and on the level of the
locally purified form. In the latter, the Kraus rank k2 of the quantum channel T is joined together with K. c) Compression schemes for the
bond and Kraus dimension of a local tensor via singular value decompositions (SVD). d) Locally purified evolution of a time step e⌧L for a
2-local Hamiltonian and on-site Lindbladians. Here we show only the 3 rightmost of the 5 Suzuki-Trotter layers from Eq. (4).

neighbouring lattice sites. We describe the variational mixed
state of the system as a tensor network representing the den-
sity matrix ⇢. But instead of expressing ⇢ directly as a MPO
[20, 38] we keep it expressed at every stage of our algorithm
in its locally purified form ⇢ = XX†, where the purification
operator X is a variational MPO:

[X]s1,...,sN
r1,...,rN

=
X

m1,...,mN�1

A[1]s1,r1
m1

A[2]s2,r2
m1,m2

. . . A[N ]sN ,rN
mN�1

. (2)

That is, we represent ⇢ as a locally purified tensor net-
work made of rank four tensors A[l] with physical dimen-
sion d, bond dimension D and Kraus dimension K (shown
in Fig. 1a). Our algorithm is now an extension of the Time
Evolving Block Decimation (TEBD) scheme [39], acting on
the level of the local tensor A[l] that also allows for dissipa-
tive channels, and never requires to contract, even partially,
the two tensor network layers (X and X†) together. Simi-
larly to TEBD, it involves splitting the propagator e⌧L for a
small time-step ⌧ into several Suzuki-Trotter layers of mutu-
ally commuting operations. To this end we consider the evo-
lution from time t to t+ ⌧ in Liouville-space

|⇢t+⌧ ii = e⌧L |⇢tii = e⌧(�iH⌦1+i1⌦H̄+D)
|⇢tii , (3)

where |Mii denotes the Liouville vector representation of a
matrix M and the operator D =

P
j
(Lj ⌦ L̄j � (L†

j
Lj ⌦ 1+

1 ⌦ LT

j
L̄j)/2) contains the dissipative part of the Lindblad

operator L. As usual, we define the operators He and Ho

by splitting the Hamiltonian H =
P

i
hi into two sums, one

containing the even interactions h2l,2l+1 and one containing
the odd interactions h2l+1,2(l+1), respectively. So both He

and Ho are each built on mutually commuting terms. If the
Lindblad generators Lj are now on-site (the case of two-site
Lindbladians is treated later on), we can approximate e⌧L via
a symmetric Suzuki-Trotter decomposition up to second order
in time as

e⌧L = e⌧Ho/2e⌧He/2e⌧De⌧He/2e⌧Ho/2 +O(⌧3) , (4)

partially shown in Fig. 1d, where H⌫ = �iH⌫ ⌦1+ i1⌦ H̄⌫

with ⌫ = o, e. Generalisations to higher orders can be con-
structed from the Baker-Campbell-Hausdorff formula. Note

that the layers He and Ho implement the coherent part of the
evolution and are identical to the usual TEBD layers. In fact,
by having ⇢t expressed as ⇢t = XtX

†

t
we see that by acting

as X 0 = e�i⌧Ho/2Xt we recover exactly |⇢0ii = e⌧Ho/2 |⇢tii
(and likewise for the even coherent layer He). Hence, on
the level of the local tensors A[l] we can just adapt the usual
TEBD algorithm for nearest neighbour Hamiltonians, to effi-
ciently perform the coherent part of the dynamics.

The dissipative layer, however, requires a more careful
treatment and we exploit the fact that since the generators Lj

act only on a single site, we find e⌧D =
N

l
e⌧Dl , with

Dl =
X

jl

✓
Ljl ⌦ L̄jl �

1

2
(L†

jl
Ljl ⌦ 1 + 1 ⌦ LT

jl
L̄jl)

◆
,(5)

where the sum runs over all generators Ljl which act on lattice
site l. Since e⌧Dl is completely positive, Choi’s theorem [40]
guarantees that we can find via diagonalisation a set of Kraus-
operators {Bl,q} satisfying e⌧Dl =

P
k

q=1 Bl,q ⌦ B̄l,q . The
action of e⌧Dl on the level of the local tensors is now given
by a contraction of Bl,q into A[l]

t
, while joining the variational

Kraus dimension K with the Kraus rank k of the quantum
channel, as shown in Fig. 1b (by construction k  d2). The
application of each Suzuki-Trotter layer increases only the di-
mension of a single leg of the local tensors A[l]: The bond
dimension D is increased by the coherent layers, the Kraus
dimension K by the dissipative layers. This allows for im-
mediate compression of the enlarged dimension via standard
tensor network tools (singular value decomposition and trun-
cation of the smallest values, see Fig. 1c), which keeps errors
under control, as discussed in the supplemental material (SM).

The algorithm yields an overall computational costs scal-
ing as O(d5D3K)+O(d5D2K2), by executing a clever con-
traction of the coherent terms. Moreover, the locally purified
tensor network makes good advantage of the tensor network
gauge transformations, e.g. by reducing costs for local mea-
surements. Finally, we were also able to provide an error es-
timator for the approximations included in the algorithm, cal-
culated from the truncated singular values arising from com-
pression (see the SM).

U. Schollwock, RMP (2005) 

➤ State of the art in 1D (poly effort) 

➤ No sign problem 

➤ Extended to open quantum systems 

➤ Machine learning  

➤ Data compression (BIG DATA) 

➤ Extended to lattice gauge theories 

➤ Simulations of low-entangled systems  
of hundreds qubits!

A. Cichocki, ECM (2013) I. Glasser, et al.  PRX (2018)

“Introduction to tensor network methods”, S.Montangero, Springer (2019)
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nian, including a magnetic plaquette term, reads

Ĥ = �t

X

x,µ

⇣
 ̂
†
x Ûx,µ  ̂x+µ + h.c.

⌘

+ m

X

x

(�1)x ̂†
x ̂x +

g
2
e

2

X

x,µ

Ê
2
x,µ (1)

�
g
2
m

2

X

x

⇣
Ûx,µxÛx+µx,µy Û

†
x+µy,µx

Û
†
x,µy

+ h.c.

⌘

where the coordinate µ runs in {µx, µy}. The first term
in Eq. (1) provides the minimal coupling between gauge
and matter fields associated with the coupling strength
t. It describes a process of fermion-antifermion pair cre-
ation/annihilation, where the parallel transporter oper-
ator guarantees that the local gauge symmetries are not
violated. The second term in the Hamiltonian repre-
sents the energy associated to the fermionic bare mass,
and it appears as a staggered chemical potential accord-
ing to the Kogut-Susskind prescription. For numerical
purpose, it has been redefined by adding an overall con-
stant mL

2
/2, thus replacing (�1)x ̂†

x ̂x ! �x,e ̂
†
x ̂x +

�x,o ̂x ̂
†
x (see Appendix A). This way, a filled local state

in the even sub-lattice cost positive energy m and car-
ries charge q; otherwise, when an odd site is empty, the
energy cost is still m, but it corresponds to having an
antiparticle (a hole) with charge �q. The last two terms
contribute to the gauge field dynamics: the electric part
with coupling ge, is completely local. The magnetic part,
with coupling gm instead, is constructed by considering
the smallest Wilson loop – product of parallel transporter
Ûx,µ in a closed loop – the size of a plaquette. Its name
is related to the fact that it generates the magnetic con-
tribution to the energy density in the continuum limit.

The LGT Hamiltonian Ĥ commutes with the local
Gauss’s law generators (in unit of q)

Ĝx =  ̂
†
x ̂x �

1� px

2
�

X

µ

Êx,µ, (2)

where the unit lattice vector µ in the sum runs in
{±µx,±µy}, while px = (�1)x is, again, the lattice
site parity. In addition, the model exhibits an U(1)
global symmetry, namely the conservation of the total
charge Q̂ =

P
x[ ̂

†
x ̂x �

1�px

2 ] = �
L2

2 + N̂ , equiva-
lent, apart from a constant, to the number conservation
N̂ =

P
x  ̂

†
x ̂x of Kogut-Susskind matter fermions. As a

consequence of the convention, using Êx,�µ = �Êx�µ,µ,
the sum of all 4 terms of the gauge field around the
lattice site x corresponds to the outgoing electric flux,
i.e.

P
µ Êx,µ = Ex,µx + Ex,µy � Ex�µx,µx � Ex�µy,µy .

The gauge invariant Hilbert space is thus given by all
states |�i satisfying Ĝx|�i = 0 at every site x. As each
electric field degree of freedom is shared by two Gauss’
generators Gx, the generators themselves overlap, and
projecting onto the gauge-invariant subspace becomes a
nonlocal operation. Only for 1D lattice QED, or lattice
Schwinger model [19], it is possible to integrate out the

gauge variables and work with the matter field only (al-
beit with long-range interactions) [61]. However, in two
dimensions, a given (integer occupation) realisation of
the matter fermions does not fix a unique gauge field con-
figuration, thus requiring explicit treatment of the gauge
fields as quantum variables. A numerically-relevant com-
plication, related to the standard Wilson formulation of
lattice gauge theories, arises from the gauge field algebra,
[Ê, Û ] = Û with Ê = Ê

† and Û Û
† = Û

†
Û = 1, whose

representations are always infinite dimensional. Simply
put, if a representation contains the gauge field state
|↵i, such that Ê|↵i = ↵|↵i with ↵ 2 R, then the states
|↵±1i = Û

±1
|↵i belong to the representation as well. By

induction, the representation must contain all the states
|↵+Ni, which are mutually orthogonal as distinct eigen-
states of Ê, thus the representation space dimension is
at least countable infinite.

In order to make the Hamiltonian numerically
tractable via Tensor Network methods, we need to trun-
cate the local gauge field space to a finite dimension.
For bosonic models, this is typically done by introduc-
ing an energy cutoff and eliminating states with single-
body energy density beyond it, while a posteriori check-
ing the introduced approximation. Similarly, for U(1)
lattice gauge theories, we truncate the electric field ac-
cording to the quantum link model formulation. Specif-
ically, the gauge fields are substituted by Spin opera-
tors, namely Êx,µ = (Ŝz

x,µ + ↵) and Ûx,µ = Ŝ
+
x,µ/s, such

that Ê is still hermitian and the commutation relation
[Êx,µ, Ûy,⌫ ] = �x,y�µ,⌫Ûx,µ is preserved [2], however Û

is no longer unitary for any finite spin-s representation
|Ŝ|2 = s(s + 1)1. The original algebra is then restored
in the large spin limit s ! 1, for any background field
↵ 2 R. Similar truncation strategies, based on group rep-
resentations, can be applied to non-Abelian gauge the-
ories as well [35, 62]. In the following, we make use
of the Spin-1 representation (s = 1), under zero back-
ground field ↵ = 0, which captures reasonably well the
low-energy physics of the theory, especially in the param-
eter regions wherein the ground-state is characterised by
small fluctuations above the bare vacuum. s = 1 is the
smallest spin representation exhibiting a nontrivial elec-
tric energy contribution. In fact, for s = 1/2, we have
that Ê

2
x,µ / (�z

x,µ)
2 = 1 is simply a constant in the

Hamiltonian, thus g
2
e plays no role. Finally, in 1D it was

observed that truncated gauge representations converge
rapidly to the continuum theory, e.g. in the Schwinger
model [37, 63, 64], reinforcing quantitative validity of the
results obtained in the simplified model.

Let us mention that, to highlight the connection to
the Wilson approach in the Hamiltonian formulation of
QED in 2D, the electric and magnetic couplings should
be related between each other such that g

2
e ⇠ g

2
a
�2 and

g
2
m ⇠ g

�2
a
�2, where g is the electrodynamic coupling

and a the lattice spacing. Similarly, mass and kinetic cou-
pling should behave respectively as m ⇠ 1 and t ⇠ a

�1.
To recover the continuum theory, matter and gauge fields
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Figure 3. Phase diagram for m < 0 obtained from the
evaluation of the density of matter in the TTN ground state
for a 8⇥ 8 lattice system with periodic boundary conditions.
The insets are schematic representations of the ground state
deep in the two phases: the bare vacuum for g

2
e/2 � 2|m|,

a typical dimer configuration for g
2
e/2 ⌧ �2m. The dashed

line is located at the classical (t = 0) transition g
2
e/2 = �2m.

Hamiltonian (1) within this subspace. Unless otherwise
stated, we consider periodic boundary conditions. We
characterise the ground state of the Hamiltonian by look-
ing at the energy density hĤi/L

2, and the particle den-
sity hn̂i = 1

L2

P
xhn̂xi where n̂x = (�x,e ̂†

x ̂x+ �x,o ̂x ̂
†
x)

counts how many charges are in the system, both posi-
tive and negative, i.e. fermions in even sites plus holes
in odd sites. We start our analysis by first focusing on
the case in which the magnetic coupling has been set to
zero, gm = 0. Before detailing the numerical results,
some analytically-solvable limit cases should be consid-
ered. For large positive values of the bare mass m � t,
the fluctuations above the bare vacuum are highly sup-
pressed; the system exhibits a unique phase since there
is no competition between the matter term and the elec-
tric field term in the Hamiltonian. Indeed, to construct
pairs of particle/antiparticle, the matter energy and the
electric field energy both contribute to an overall increas-
ing of the ground-state energy. In order to explore more
interesting phenomena, we allow the mass coupling to
reach negative values. Doing so, we can identify two dif-
ferent regions depending on the competition between the
electric coupling g

2
e/2 and the values of the mass m < 0:

(i) for g2e/2 � 2|m|, we still have a vacuum-like phase,
where we expect a unique non-degenerate ground-state
with small particle-density fluctuations. This phase ex-
ists, no matter the value of the mass, as far as the energy
cost to turn on a non-vanishing electric field on a single
link overcomes the gain in creating the associated pairs
of particle/antiparticle. Indeed, for any value of the mass

and g
2
e/2 ! 1, or for g

2
e/2 6= 0 and m ! 1, the pres-

ence of a finite electric field, or finite particle density, is
strictly forbidden and the ground-state flows toward the
only admissible configuration, namely the bare vacuum.

(ii) for �2m � g
2
e/2 > 0 the phase of matter is charac-

terised by slightly deformed particle-antiparticle dimers;
this phase of course only exists for negative value of the
mass and represents the region wherein the energy gain
for creating a couple of particle/antiparticle largely over-
comes the associated electric field energy cost. Here the
ground-state remains highly degenerate as far as the ki-
netic energy coupling |t| is much smaller than all the
others energy scales (degeneracy being lifted only at the
fourth order in t). In particular, for g

2
e/2 6= 0 and

m ! �1 the ground state reduces to a completely filled
state. In order to minimise the electric field energy, par-
ticles and antiparticles are arranged in L

2
/2 pairs (where

we are assuming L even) sharing a single electric flux in
between. All these configurations are energetically equiv-
alent and their degeneracy corresponds to the number
of ways in which a finite quadratic lattice (with open
or periodic boundary conditions) can be fully covered
with given numbers of “horizontal” and “vertical” dimers.
This number scales exponentially with the system size as
exp(L2

C/⇡) for L ! 1, with C ' 0.915966 the Cata-
lan’s constant [77]. For sake of clarity, we stress that such
‘dimers’ are not entangled clusters of matter and gauge
fields; they are roughly product states.

Let us mention that the case ge = 0 with m ! 1

(m ! �1) is more pathological since any gauge-field
configuration compatible with the vacuum (dimerised)
state is admissible, provided the Gauss’s law is fulfilled.
In practice, we may draw a generic closed loop with finite
electric flux on top of the vacuum state without modify-
ing its energy; similar gauge loops may be realised on top
of the dimerised state, provided it is compatible with the
occupied links, without changing its energy as well. All
these configurations are gauge-invariant by construction,
and increase the degeneracy of the ground-state energy
sector.

Our numerical results confirm and extend this picture,
as it can easily be seen in the phase diagram displayed in
Fig. 3, obtained from TTN simulations in a 8⇥8 system.
The matter density is roughly zero in the vacuum phase;
otherwise, it takes on a finite value whenever the system
exhibits “dimerisation”, i.e. in the charge-crystal phase.
We checked that the numerical data, both the ground-
state energy density and the particle density, show an
asymptotic tendency toward the perturbative estimates.
Interestingly, the particle density experiences an abrupt
change mainly in a narrowed region around m ' �g

2
e/4,

where the local slope is becoming steeper as the elec-
tric coupling (and the mass) is approaching zero (see left
panel in Fig. 4), as roughly predicted by perturbation
theory and supported by the exact results in the 2 ⇥ 2
case (see Appendices C and D).

As a confirmation of this scenario, we expect particle
fluctuations to be enhanced around such region, mainly

PRX (2020)

2D

Nature Comm. (2021)
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Figure 3: (a) Particle density as a function of m, for different system size L. The inset shows the same plot but for
t = 0 and L = 4. Ground state configuration for m = �3.0 (b) and m = 3.0 (c), obtained by numerically computing
the local observables of charge occupation and electric field on links. (d) Universal scaling function �(x) close to the
transition point mc ⇡ �0.39 with critical exponents � ⇡ 0.16 and ⌫ ⇡ 1.22. (e) Contour plot of the square root of

the residual sum of squares in the (⌫,�) plane for the best-fitting values of the critical exponents.

|GSi is the ground state and n̂x = �x,e 
†
x x + �x,o(1 �

 
†
x x) is the occupation number operator for the stag-

gered fermions that counts all the matter/antimatter par-
ticles into the system. The behavior of this observable is
shown in Fig. 3(a) for different lattice sizes: as expected,
the particle density vanishes for large positive m whereas
it tends to its maximum value, ⇢ ⇡ 1, for large negative
m. In order to characterize in detail the two regimes, we
reconstruct the ground state configurations by looking
at the local observables of charge occupation hn̂xi and
electric field on links

D
Êx,µ

E
, as shown in Fig. 3(b) for

m = �3.0 and in Fig. 3(c) for m = 3.0, for a lattice with
L = 4. For large negative m, the ground state is char-
acterized by the presence of matter-antimatter dimers
(mesons). In this regime, the energy gain for creating
a pair of particle-antiparticle widely overcomes the en-
ergy cost associated to the electric field excitation in
between. Thus, particles and antiparticles are arranged
in the maximum number of mesons that are possible to
create on the three-dimensional lattice, interacting only
through the internal electric field in order to minimize
the electric field energy. Since there are different ways
to arrange L

3
/2 mesons on the three-dimensional lat-

tice, corresponding to the directions of the electric fields,

the ground state results highly degenerate in this regime
(in Fig. 3(b) we show one of these possible configura-
tions). For large positive m, the excitations of matter
and gauge degrees of freedom are forbidden due to the
high energetic costs, so the ground state effectively tends
to approximate the bare vacuum with small fluctuations
of particles and electric fields.

In the intermediate regime of m, we observe an abrupt
change of the density, which results sharper for large sizes
and might signal the existence of a possible phase tran-
sition, closely related to the one detected for the same
model in one and two spatial dimensions [35, 40, 48].

At t = 0, the Hamiltonian results diagonal in the local
basis (we recall that we are neglecting the magnetic inter-
actions) and it is trivial to prove that the system under-
goes a first-order phase transition between the bare vac-
uum, with energy Ev = �m

L3

2 and the mesonic phase,
with energy Em = (m+ g2

e
2 )L

3

2 . The ground-state exhibits
a level-crossing at the critical value m

(0)
c = � g2

e
4 = 1

2 that
is obtained at Ev = Em. This behaviour is clearly seen in
the inset of Fig. 3(a), showing a discontinuous transition
between the two configurations.

In order to understand the behavior of the system for
finite t, we observe that the density plotted in Fig. 3(a)
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Figure 3: (a) Particle density as a function of m, for different system size L. The inset shows the same plot but for
t = 0 and L = 4. Ground state configuration for m = �3.0 (b) and m = 3.0 (c), obtained by numerically computing
the local observables of charge occupation and electric field on links. (d) Universal scaling function �(x) close to the
transition point mc ⇡ �0.39 with critical exponents � ⇡ 0.16 and ⌫ ⇡ 1.22. (e) Contour plot of the square root of

the residual sum of squares in the (⌫,�) plane for the best-fitting values of the critical exponents.

|GSi is the ground state and n̂x = �x,e 
†
x x + �x,o(1 �

 
†
x x) is the occupation number operator for the stag-

gered fermions that counts all the matter/antimatter par-
ticles into the system. The behavior of this observable is
shown in Fig. 3(a) for different lattice sizes: as expected,
the particle density vanishes for large positive m whereas
it tends to its maximum value, ⇢ ⇡ 1, for large negative
m. In order to characterize in detail the two regimes, we
reconstruct the ground state configurations by looking
at the local observables of charge occupation hn̂xi and
electric field on links

D
Êx,µ

E
, as shown in Fig. 3(b) for

m = �3.0 and in Fig. 3(c) for m = 3.0, for a lattice with
L = 4. For large negative m, the ground state is char-
acterized by the presence of matter-antimatter dimers
(mesons). In this regime, the energy gain for creating
a pair of particle-antiparticle widely overcomes the en-
ergy cost associated to the electric field excitation in
between. Thus, particles and antiparticles are arranged
in the maximum number of mesons that are possible to
create on the three-dimensional lattice, interacting only
through the internal electric field in order to minimize
the electric field energy. Since there are different ways
to arrange L

3
/2 mesons on the three-dimensional lat-

tice, corresponding to the directions of the electric fields,

the ground state results highly degenerate in this regime
(in Fig. 3(b) we show one of these possible configura-
tions). For large positive m, the excitations of matter
and gauge degrees of freedom are forbidden due to the
high energetic costs, so the ground state effectively tends
to approximate the bare vacuum with small fluctuations
of particles and electric fields.

In the intermediate regime of m, we observe an abrupt
change of the density, which results sharper for large sizes
and might signal the existence of a possible phase tran-
sition, closely related to the one detected for the same
model in one and two spatial dimensions [35, 40, 48].

At t = 0, the Hamiltonian results diagonal in the local
basis (we recall that we are neglecting the magnetic inter-
actions) and it is trivial to prove that the system under-
goes a first-order phase transition between the bare vac-
uum, with energy Ev = �m

L3

2 and the mesonic phase,
with energy Em = (m+ g2

e
2 )L

3

2 . The ground-state exhibits
a level-crossing at the critical value m

(0)
c = � g2

e
4 = 1

2 that
is obtained at Ev = Em. This behaviour is clearly seen in
the inset of Fig. 3(a), showing a discontinuous transition
between the two configurations.

In order to understand the behavior of the system for
finite t, we observe that the density plotted in Fig. 3(a)
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FUTURE STEPS AND CONCLUSIONS
➤ Atom/ion quantum computers are among the leaders of the 

QT transformation 

➤ Tensor network algorithms can be used to benchmark, verify, 
support and guide quantum simulations, computations and 
communication 

➤ Hybrid solutions will give the first results in  

➤ Complex optimisation problems  

➤ Machine learning  

➤ Quantum sensing 

➤ Optimized protocols 
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