

Ottocento anni di libertà e futuro

PADUA QUANTUM COMPUTING AND SIMULATION CENTER

Simone Montangero

Università degli Studi di Padova

QUANTUM COMPUTING AND SIMULATION CENTER

Investment of 6 M€ National strategic partnerships Trapped ion quantum computer

PASQuanS

Programmable Atomic Large-Scale Quantum Simulation

QUANTUM COMPUTING AND SIMULATION CENTER

Infrastructure

Quantum Computation & Simulation

Quantum interfaces & Networks

Quantum & Classical software

Support

Education, Dissemination, & Technological transfer

Management & coordination

Quantum interfaces & Networks

Analog quantum simulators with coupled photons and atoms

Exploring new dimensions for novel phases of light-and-matter in:

- Suspended atoms coupled to photonic waveguides
- Atoms trapped within photonic crystals

Image courtesy: [1] A.P. Burgers *et al.* PNAS **116**, 2 [2] Ravitej Uppu *et al.* PRL **126**, 177402

D. Jaschke, A. Pagano, S. Weber, and SM arxiv:2210.03763

Quantum computing for industry

Education, Dissemination, & Technological transfer

B. Fresch

Quantum algorithms for simulating energy and charge transfer dynamics in molecular networks. Non-unitary dynamics of the open system via effective representations of the environment in the quantum circuit.

> S. Corni PCM-CCSD 0.000 ---- PCM-HF PCM-VQE -0.002 ΔG(r) [Ha] -0.004 -0.006 -0.008 0.5 1.0 2.0 2.5 1.5 r₀_н [Å]

Quantum algorithms for electronic states of molecules in gas phase and in solution, their structures, and their optical properties

D. Lucchesi

Insight on the structure of the jets produced in proton-proton collisions at LHC. We are working within LHCb collaboration to investigate the b quark originated jets.

Dynamical systems for quantum computing, minimal representation and efficient simulations

See also L. Guidoni and D. Gerace's talks...

66

When do we really need a quantum simulation/computation?

TENSOR NETWORK ALGORITHMS

- State of the art in 1D (poly effort)
- ► No sign problem
- Extended to open quantum systems
- ► Machine learning
- ► Data compression (BIG DATA)
- Extended to lattice gauge theories
- Simulations of low-entangled systems of hundreds qubits!

"Introduction to tensor network methods", S.Montangero, Springer (2019)

U. Schollwock, RMP (2005)

A. Cichocki, ECM (2013) I. Glasser, et al. PRX (2018)

LATTICE GAUGE THEORIES

 $g_{e}^{2}/2$

Hilbert space of

200Kb QRAM

~64x64x64 qubits!

 $\hat{H} = -t \sum_{x,\mu} \left(\hat{\psi}_x^{\dagger} \, \hat{U}_{x,\mu} \, \hat{\psi}_{x+\mu} + h.c. \right)$ $+ m \sum_{x} (-1)^{x} \hat{\psi}_{x}^{\dagger} \hat{\psi}_{x} + \frac{g_{e}^{2}}{2} \sum_{x \; \mu} \hat{E}_{x,\mu}^{2}$ $-\frac{g_m^2}{2}\sum \left(\hat{U}_{x,\mu_x}\hat{U}_{x+\mu_x,\mu_y}\hat{U}_{x+\mu_y,\mu_x}^{\dagger}\hat{U}_{x,\mu_y}^{\dagger}+h.c.\right)$

Nature Com

Quantum Matcha Tea

An efficient matrix product state simulator for quantum circuits

FUTURE STEPS AND CONCLUSIONS

- Atom/ion quantum computers are among the leaders of the QT transformation
- Tensor network algorithms can be used to benchmark, verify, support and guide quantum simulations, computations and communication
- ► Hybrid solutions will give the first results in
 - Complex optimisation problems
 - ► Machine learning
 - Quantum sensing
 - Optimized protocols

PADUA QUANTUM COMPUTING AND SIMULATION CENTER

Balling Real Party

1.00

1945

1000