
Quantum Matcha Tea
An efficient matrix product state simulator for quantum circuits

HPCQC - Fifth edition
December 15 2022

Marco Ballarin
Università degli studi di Padova

Quantum

TEA
MATCHA Alice & Nora ©

Quantum

TEA
MATCHA Alice & Nora ©

Quantum

TEA
MATCHA Alice & Nora ©

Quantum

TEA
MATCHA Alice & Nora ©

Running quantum algorithms

2

Quantum algorithm

Running quantum algorithms

2

Quantum algorithm

+ Real hardware

- Noisy

- Limited number of qubits

Quantum hardware

Running quantum algorithms

2

Quantum algorithm

cuQuantum

High # of qubits +

Flexibility (observables) -

Depth of the circuit -

+ Real hardware

- Noisy

- Limited number of qubits

Quantum hardware

Running quantum algorithms

2

Quantum algorithm+ Access to exact state

- Limited number of qubits

Exact simulator

cuQuantum

High # of qubits +

Flexibility (observables) -

Depth of the circuit -

+ Real hardware

- Noisy

- Limited number of qubits

Quantum hardware

Running quantum algorithms

2

Quantum algorithm+ Access to exact state

- Limited number of qubits

Exact simulator

cuQuantum

High # of qubits +

Flexibility (observables) -

Depth of the circuit -

Clifford simulator

High # of qubits +

Flexibility (# of T gates) -

+ Real hardware

- Noisy

- Limited number of qubits

Quantum hardware

Running quantum algorithms

2

Quantum algorithm+ Access to exact state

- Limited number of qubits

Exact simulator

cuQuantum

High # of qubits +

Flexibility (observables) -

Depth of the circuit -

Clifford simulator

High # of qubits +

Flexibility (# of T gates) -

+ High # of qubits

- Flexibility (entanglement)

Tensor Network simulator

+ Real hardware

- Noisy

- Limited number of qubits

Quantum hardware

Why tensor networks

3

dim(ℋ) = 2n

We can represent a
subset efficiently

?

Why tensor networks

3

dim(ℋ) = 2n

We can represent a
subset efficiently?

Why tensor networks

3

dim(ℋ) = 2n

We can represent a
subset efficiently

|ψ⟩ =
χ

∑
α=1

λα|Aα⟩ |Bα⟩

?

Why tensor networks

3

dim(ℋ) = 2n

We can represent a
subset efficiently

|ψ⟩ =
χ

∑
α=1

λα|Aα⟩ |Bα⟩

Tensor networks compress the quantum correlations
between subsystems compress entanglement⇒

?

Why tensor networks

3

dim(ℋ) = 2n

We can represent a
subset efficiently

|ψ⟩ =
χ

∑
α=1

λα|Aα⟩ |Bα⟩

Tensor networks compress the quantum correlations
between subsystems compress entanglement⇒

Only keep highest Schmidt valuesχ

?

Matrix product states

4

χ
O(2n) → O(2nχ2)

Memory requirements

Matrix product states

4

χ
O(2n) → O(2nχ2)

Each tensor (ball) encodes
the state of a qubit

Memory requirements

Matrix product states

4

Bonds encode entanglement
between qubits

χ
O(2n) → O(2nχ2)

Each tensor (ball) encodes
the state of a qubit

Memory requirements

Matrix product states

4

Bonds encode entanglement
between qubits

χ
O(2n) → O(2nχ2)

Each tensor (ball) encodes
the state of a qubit

Memory requirements

State evolution through
quantum circuit

Matrix product states

4

Bonds encode entanglement
between qubits

χ
O(2n) → O(2nχ2)

Each tensor (ball) encodes
the state of a qubit

MPS SIMULATIONS ARE
NOT LIMITED BY THE

NUMBER OF QUBITS BUT
BY THE ENTANGLEMENT

Memory requirements

State evolution through
quantum circuit

Quantum TEA distribution

5

T E ATensor network Applications

Emulator

Quantum TEA distribution

5

T E ATensor network Applications

Emulator
Quantum tea leaves: Utility

Quantum red tea: tensor handling

Quantum chai tea: AI and ML with tensor networks

Quantum green tea: Schrödinger equation solution for many-body states

Quantum matcha tea: quantum circuit HPC simulations

Quantum TEA distribution

5

T E ATensor network Applications

Emulator
Quantum tea leaves: Utility

Quantum red tea: tensor handling

Quantum chai tea: AI and ML with tensor networks

Quantum green tea: Schrödinger equation solution for many-body states

Quantum matcha tea: quantum circuit HPC simulations

Public!

Quantum Matcha Tea workflow

6

Quantum circuit

Observables

Python interface, definition
of the problem

Quantum Matcha Tea workflow

6

Quantum circuit

Observables

Python interface, definition
of the problem

Matrix product state
simulator

Quantum Matcha Tea workflow

6

Quantum circuit

Observables

Python interface, definition
of the problem

Serial CPU
Multinode MPI CPU

Serial GPU

Backends
for running

the simulations

Matrix product state
simulator

Quantum Matcha Tea workflow

6

Quantum circuit

Observables

Python interface, definition
of the problem

Serial CPU
Multinode MPI CPU

Serial GPU

Backends
for running

the simulations

Matrix product state
simulator

Not public
yet

Quantum Matcha Tea workflow

6

Quantum circuit

Observables

Python interface, definition
of the problem

Serial CPU
Multinode MPI CPU

Serial GPU

Backends
for running

the simulations

Python interface output

Observables
Runtime statistics

Convergence checks

Matrix product state
simulator

Not public
yet

|Aα⟩ |Bα⟩

Convergence checks & error bound

7

|ψ⟩ =
χi−1

T

∑
α=1

λα

Convergence checks & error bound

7

|ψ⟩ =
χi−1

T

∑
α=1

λα|Aα⟩ |Bα⟩

Convergence checks & error bound

7

|ψ⟩ =
χi−1

T

∑
α=1

λα|Aα⟩ |Bα⟩

Convergence checks & error bound

7

|ψ⟩ =
χi−1

T

∑
α=1

λα

Only keep highest singular values, χ |ϕ⟩

|Aα⟩ |Bα⟩

Convergence checks & error bound

7

Only keep highest singular values, χ |ϕ⟩

|Aα⟩ |Bα⟩
|ψ⟩ =

χi
T

∑
α=1

λα

Convergence checks & error bound

7

Only keep highest singular values, χ |ϕ⟩

ℱi(χ) = ⟨ψ |ϕ⟩
2

= 1 −
χi

T

∑
α=χ+1

λ2
α

2
Fidelity of the state

|Aα⟩ |Bα⟩
|ψ⟩ =

χi
T

∑
α=1

λα

Convergence checks & error bound

7

Only keep highest singular values, χ |ϕ⟩

ℱi(χ) = ⟨ψ |ϕ⟩
2

= 1 −
χi

T

∑
α=χ+1

λ2
α

2
Fidelity of the state Computed during

the simulation

|Aα⟩ |Bα⟩
|ψ⟩ =

χi
T

∑
α=1

λα

Convergence and error checks

8

Convergence and error checks

8

ℱi(χ) = 1 −
χi

T

∑
α=χ+1

λ2
α

2Fidelity of the state
after a single gate

Convergence and error checks

8

ℱi(χ) = 1 −
χi

T

∑
α=χ+1

λ2
α

2Fidelity of the state
after a single gate

ℱtot(χ) ≥ ∏
i

ℱi(χ)

Fidelity at the end
of the simulation

Optimisation & parallelism

9

Gates acts on the
same qubits:

we contract gates
together and only

after with state

Optimisation & parallelism

9

Gates acts on the
same qubits:

we contract gates
together and only

after with state

Optimisation & parallelism

9

Gates acts on the
same qubits:

we contract gates
together and only

after with state

Optimisation & parallelism

9

Node 0 Node 1

Gates acts on the
same qubits:

we contract gates
together and only

after with state

Optimisation & parallelism

9

Node 0 Node 1

Gates acts on the
same qubits:

we contract gates
together and only

after with state

Optimisation & parallelism

9

Node 0 Node 1

Gates acts on the
same qubits:

we contract gates
together and only

after with state

Copy of the qubit state

Optimisation & parallelism

9

Node 0 Node 1

Gates acts on the
same qubits:

we contract gates
together and only

after with state

Barrier to wait for the
data from node 0

Copy of the qubit state

Optimisation & parallelism

9

Node 0 Node 1

Gates acts on the
same qubits:

we contract gates
together and only

after with state

Barrier to wait for the
data from node 0

Copy of the qubit state

A GOOD PARALLEL
SCALING INCREASES
ERRORS DUE TO AN

ALGORITHMIC
SUBTLETY

Benchmarks

10

RANDOM RANDOM RANDOM

QFT

… … …

 reachedχmax

Entangling block size
C

om
pu

ta
tio

na
l t

im
e

[s
]

, , threadsn = 100 χmax = 1024 16

5 10 15

102

103

104

105

qiskit
fortran
numpy
Wall time

Benchmarks

10

RANDOM RANDOM RANDOM

QFT

Strongly
entangling… … …

 reachedχmax

Entangling block size
C

om
pu

ta
tio

na
l t

im
e

[s
]

, , threadsn = 100 χmax = 1024 16

5 10 15

102

103

104

105

qiskit
fortran
numpy
Wall time

Benchmarks

10

RANDOM RANDOM RANDOM

QFT

Strongly
entangling… … …

 reachedχmax

Entangling block size
C

om
pu

ta
tio

na
l t

im
e

[s
]

, , threadsn = 100 χmax = 1024 16

5 10 15

102

103

104

105

qiskit
fortran
numpy
Wall time

Run on
Galileo100

Applications

11

Entanglement entropy production in QNN
Ballarin, Marco, et al. arXiv:2206.02474
• Simulations up to 50 qubits
• Bond dimension of 4096
• 11h of runtime on Galileo100

Ab initio two-dimensional digital twin for
quantum computer
Jaschke, Daniel, et al. arXiv:2210.03763
• Use of the unbiased sampling
• Quantum matcha tea simulations used as target

state to compute the fidelity of a simulation with
crosstalk

0.00 0.25 0.50 0.75 1.00 1.25

Norm. layers L/n

0.2

0.4

0.6

0.8

1.0

N
or

m
.

en
t.

e S n

n = 8
n = 12
n = 20
n = 30
n = 50

Conclusions

12

MPS simulations are not
limited by the number of

qubits but by the
entanglement

Entangling block size

C
om

pu
ta

tio
na

l t
im

e
[s

]

, , threadsn = 100 χmax = 1024 16

5 10 15

102

103

104

105

qiskit
fortran
numpy
Wall time

Conclusions

12

MPS simulations are not
limited by the number of

qubits but by the
entanglement

Easy-to-use python frontend
and fast HPC-ready backend

(Both GPU and CPU)

Entangling block size

C
om

pu
ta

tio
na

l t
im

e
[s

]

, , threadsn = 100 χmax = 1024 16

5 10 15

102

103

104

105

qiskit
fortran
numpy
Wall time

Conclusions

12

MPS simulations are not
limited by the number of

qubits but by the
entanglement

Easy-to-use python frontend
and fast HPC-ready backend

(Both GPU and CPU)

Error analysis tools and
efficient computations of

observables optimised for the
MPS representation Entangling block size

C
om

pu
ta

tio
na

l t
im

e
[s

]

, , threadsn = 100 χmax = 1024 16

5 10 15

102

103

104

105

qiskit
fortran
numpy
Wall time

Thanks for your attention

Simone Montangero

Riccardo Mengoni

Daniel Jaschke

Daniele Ottaviani

Dipartimento

di Fisica 

e Astronomia 
Galileo Galilei

Efficient sampling of final state

14
0 50 100 150

0.9960

0.9965

0.9970

0.9975

0.9980

Number of samples

St
at

e
co

ve
ra

ge

Efficient sampling of final state

15

0

00 10

000 010100 110

1

01 11

001 011101 111

0 10.1 0.2 0.2 0.3 ?

1

1

0

0

0.2 0.3

0.3

?

Sample random number n = 0.05,0.29Reuse the computation
of this node

? ?
We know which states we did not sample
and can sample only here in second round

