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Quantum algorithm+ Access to exact state

- Limited number of qubits

Exact simulator

cuQuantum

High # of qubits + 

Flexibility (observables) -  


Depth of the circuit -

Clifford simulator

High # of qubits + 

Flexibility (# of T gates) -  

+ High # of qubits

- Flexibility (entanglement)

Tensor Network simulator

+ Real hardware

- Noisy

- Limited number of qubits

Quantum hardware
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dim(ℋ) = 2n

We can represent a 
subset efficiently

|ψ⟩ =
χ

∑
α=1

λα|Aα⟩ |Bα⟩

Tensor networks compress the quantum correlations 
between subsystems  compress entanglement⇒

Only keep highest  Schmidt valuesχ

?
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4

Bonds encode entanglement 
between qubits

χ
O(2n) → O(2nχ2)

Each tensor (ball) encodes 
the state of a qubit

MPS SIMULATIONS ARE 
NOT LIMITED BY THE 

NUMBER OF QUBITS BUT 
BY THE ENTANGLEMENT

Memory requirements

State evolution through 
quantum circuit
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T   E   ATensor network Applications

Emulator
Quantum tea leaves: Utility

Quantum red tea: tensor handling

Quantum chai tea: AI and ML with tensor networks

Quantum green tea: Schrödinger equation solution for many-body states

Quantum matcha tea: quantum circuit HPC simulations

Public!
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Quantum circuit

Observables

Python interface, definition 
of the problem

Serial CPU 
Multinode MPI CPU 

Serial GPU

Backends 
for running 

the simulations

Python interface output

Observables 
Runtime statistics 

Convergence checks

Matrix product state 
simulator

Not public 
yet
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Only keep highest  singular values,  χ |ϕ⟩

ℱi(χ) = ⟨ψ |ϕ⟩
2

= 1 −
χi

T

∑
α=χ+1

λ2
α

2
Fidelity of the state Computed during 

the simulation

|Aα⟩ |Bα⟩
|ψ⟩ =

χi
T

∑
α=1

λα
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ℱi(χ) = 1 −
χi

T

∑
α=χ+1

λ2
α

2Fidelity of the state 
after a single gate

ℱtot(χ) ≥ ∏
i

ℱi(χ)

Fidelity at the end 
of the simulation
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Optimisation & parallelism
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Node 0 Node 1

Gates acts on the 
same qubits: 

we contract gates 
together and only 

after with state

Barrier to wait for the 
data from node 0

Copy of the qubit state

A GOOD PARALLEL 
SCALING INCREASES 
ERRORS DUE TO AN 

ALGORITHMIC 
SUBTLETY
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Entanglement entropy production in QNN 
Ballarin, Marco, et al. arXiv:2206.02474  
• Simulations up to 50 qubits 
• Bond dimension of 4096 
• 11h of runtime on Galileo100

Ab initio two-dimensional digital twin for  
quantum computer 
Jaschke, Daniel, et al. arXiv:2210.03763 
• Use of the unbiased sampling 
• Quantum matcha tea simulations used as target 

state to compute the fidelity of a simulation with 
crosstalk

0.00 0.25 0.50 0.75 1.00 1.25

Norm. layers L/n

0.2

0.4

0.6

0.8

1.0

N
or

m
.

en
t.

e S n

n = 8
n = 12
n = 20
n = 30
n = 50



Conclusions

12

MPS simulations are not 
limited by the number of 

qubits but by the 
entanglement

Entangling block size

C
om

pu
ta

tio
na

l t
im

e 
[s

]

, ,  threadsn = 100 χmax = 1024 16

5 10 15

102

103

104

105

qiskit
fortran
numpy
Wall time



Conclusions

12

MPS simulations are not 
limited by the number of 

qubits but by the 
entanglement

Easy-to-use python frontend 
and fast HPC-ready backend 

(Both GPU and CPU)

Entangling block size

C
om

pu
ta

tio
na

l t
im

e 
[s

]

, ,  threadsn = 100 χmax = 1024 16

5 10 15

102

103

104

105

qiskit
fortran
numpy
Wall time



Conclusions

12

MPS simulations are not 
limited by the number of 

qubits but by the 
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Easy-to-use python frontend 
and fast HPC-ready backend 

(Both GPU and CPU)

Error analysis tools and 
efficient computations of 

observables optimised for the 
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Sample random number n = 0.05,0.29Reuse the computation 
of this node

? ?
We know which states we did not sample 
and can sample only here in second round


