Quantum Matcha Tea An efficient matrix product state simulator for quantum circuits

Marco Ballarin Università degli studi di Padova **HPCQC** - Fifth edition **December 15 2022**

Running quantum algorithms

- + Real hardware
 - Noisy
- Limited number of qubits

Quantum hardware

Quantum algorithm

Running quantum algorithms

- + Real hardware
 - Noisy
- Limited number of qubits

Quantum hardware

- Limited number of qubits

Quantum hardware

Exact simulator

- Limited number of qubits

Quantum hardware

Exact simulator

Quantum hardware

?

Why tensor networks

 $dim(\mathcal{H}) = 2^n$

We can represent a subset efficiently

 $dim(\mathcal{H}) = 2^n$

X V $\alpha = 1$

We can represent a subset efficiently

Why tensor networks

 $dim(\mathcal{H}) = 2^n$

 $\psi \rangle = \sum_{\alpha=1}^{\chi}$

Tensor networks compress the quantum correlations between subsystems \Rightarrow compress entanglement

$|\psi\rangle = \sum_{\alpha=1}^{\chi} \left| \begin{array}{c} \text{Tensor net between s} \\ \alpha = 1 \end{array} \right|$

Tensor networks compress the quantum correlations between subsystems \Rightarrow compress entanglement

Only keep highest χ Schmidt values

Matrix product states

Memory requirements $O(2^n) \to O(2n\chi^2)$

Matrix product states

Each tensor (ball) encodes the state of a qubit

Memory requirements $O(2^n) \rightarrow O(2n\chi^2)$

Matrix product states

Each tensor (ball) encodes the state of a qubit

Bonds encode entanglement between qubits Memory requirements $O(2^n) \rightarrow O(2n\chi^2)$ こし

Bonds encode entanglement between qubits Memory requirements $O(2^n) \rightarrow O(2n\chi^2)$ **MPS SIMULATIONS ARE** LIMITED BY THE NUMBER OF QUBITS BUT THE ENTAN

Quantum TEA distribution

Quantum TEA distribution

Quantum tea leaves: Utility

Quantum matcha tea: quantum circuit HPC simulations

Quantum red tea: **tensor handling**

Quantum chai tea: AI and ML with tensor networks

Quantum green tea: Schrödinger equation solution for many-body states

Quantum Matcha Tea workflow Quantum circuit Matrix product state simulator Observables Python interface, definition of the problem

CuPy

NumPy

Matrix product state simulator

> Serial CPU Multinode MPI CPU Serial GPU

CuPy

NumPy

Matrix product state simulator

> Serial CPU Multinode MPI CPU Serial GPU

Not public yet

CuPy

NumPy

Matrix product state simulator

Observables **Runtime statistics** Convergence checks

Python interface output

Not public

yet

Serial CPU Multinode MPI CPU Serial GPU

Convergence checks & error bound $|\psi|$ $\alpha = 1$

Convergence checks & error bound χ_T^{i-1} $|B_{\alpha}\rangle$ $|A_{\alpha}\rangle$ Λα $|\psi|$ $\alpha = 1$

Convergence checks & error bound χ_T^{i-1} $|B_{\alpha}\rangle$ $|A_{\alpha}\rangle$ Nα $|\psi\rangle$ $\alpha = 1$

Fidelity of the state $\mathcal{F}_i(\chi) = \langle \psi | \phi \rangle$

Fidelity of the state $\mathcal{F}_i(\chi) = \langle \psi | \phi \rangle$

Computed during the simulation $\alpha = \chi + 1$

Fidelity of the state after a **single** gate

$$\mathcal{F}_i(\chi) =$$

Fidelity of the state after a **single** gate

$$\mathcal{F}_i(\chi) =$$

Fidelity at the end of the simulation

 χ_T^l $\alpha = \chi + 1$

 $\mathcal{F}^{tot}(\chi) \geq \mathcal{F}_i(\chi)$

Node 0

Gates acts on the same qubits: we contract gates together and only after with state

Node 1

Gates acts on the same qubits: we contract gates together and only after with state

Node 1

Optimisation & parallelism Copy of the qubit state

Optimisation & parallelism Copy of the qubit state

Gates acts on the same qubits: we contract gates together and only after with state

Barrier to wait for the data from node 0

Optimisation & parallelism Copy of the qubit state

Gates acts on the same qubits: we contract gates together and only after with state

Barrier to wait for the data from node 0

A GOOD PARALLEL SCALING INCREASES ERRORS DUE TO AN ALGORITHMIC SUBTLETY

Applications

Entanglement entropy production in QNN Ballarin, Marco, et al. arXiv:2206.02474

- Simulations up to 50 qubits
- Bond dimension of 4096
- 11h of runtime on Galileo100

Ab initio two-dimensional digital twin for quantum computer

Jaschke, Daniel, et al. arXiv:2210.03763

- Use of the unbiased sampling
- Quantum matcha tea simulations used as target state to compute the fidelity of a simulation with crosstalk

Conclusions

MPS simulations are not limited by the number of qubits but by the entanglement

$n = 100, \chi_{max} = 1024, 16$ threads ---qiskit ---fortran -----numpy Wall time 5 10 15Entangling block size

Conclusions

MPS simulations are not limited by the number of qubits but by the entanglement

Easy-to-use python frontend and fast HPC-ready backend (Both GPU and CPU)

$n = 100, \chi_{max} = 1024, 16$ threads ---qiskit ---fortran -----numpy Wall time 5 1510 Entangling block size

Conclusions

MPS simulations are not limited by the number of qubits but by the entanglement

Easy-to-use python frontend and fast HPC-ready backend (Both GPU and CPU)

Error analysis tools and efficient computations of observables optimised for the MPS representation

$n = 100, \chi_{max} = 1024, 16$ threads ---qiskit ---fortran -----numpy Wall time 155 10 Entangling block size

Thanks for your attention

Dipartimento di Fisica e Astronomia Galileo Galilei

universität UUUIM

Simone Montangero

Daniel Jaschke

Riccardo Mengoni Danie

Efficient sampling of final state

State coverage

