
ACCELERATING QUANTUM ALGORITHM RESEARCH WITH
CUQUANTUM

HPCQC 2021

ALEX MCCASKEY, QUANTUM COMPUTING SOFTWARE ARCHITECT, NVIDIA

DECEMBER 16, 2021

AGENDA

The need for circuit simulation

cuQuantum – an overview and performance benchmarks

cuStateVec and cuTensorNet

Latest QAOA Maxcut results

Early look at programming cuQuantum for algorithmic

research

GPU-BASED SUPERCOMPUTING IN THE QC ECOSYSTEM
Researching the Quantum Computers of Tomorrow with the Supercomputers of Today

QUANTUM CIRCUIT SIMULATION
Critical tool for answering today’s most pressing questions

in Quantum Information Science (QIS):

HYBRID CLASSICAL/QUANTUM APPLICATIONS
Impactful QC applications (e.g. simulating quantum materials and systems)

will require classical supercomputers with quantum co-processors

+

• What quantum algorithms are most promising for near-term or long-term
quantum advantage?

• What are the requirements (number of qubits and error rates) to realize
quantum advantage?

• What quantum processor architectures are best suited to realize valuable
quantum applications?

• How can we integrate and take advantage of classical HPC to accelerate
hybrid classical/quantum workloads

QUANTUM CIRCUIT SIMULATION APPROACHES

State vector
“Gate-based emulation of a quantum computer”

• Maintain full 2n qubit vector state in memory

• Update all states every timestep, probabilistically sample n of
the states for measurement

Memory capacity & time grow exponentially w/ # of qubits -
practical limit around 50 qubits on a supercomputer

Tensor network
“Only simulate the states you need”

• Use tensor network contractions to
dramatically reduce memory for simulating circuits

• Can simulate 100s or 1000s of qubits for
many practical quantum circuits

GPUs are a great fit for either approach

Introducing cuQuantum

▪ cuQuantum is an SDK of optimized libraries and
tools for accelerating quantum computing
workflows

▪ cuQuantum is not a:

▪ Quantum Computer

▪ Quantum Computing Framework

▪ Quantum Circuit Simulator

Quantum Computing Frameworks (e.g., Cirq, Qiskit)

QPU

Quantum Circuit Simulators

(e.g., Qsim, Qiskit-aer)

cuQuantum

cuStateVec

GPU Accelerated Computing

Quantum Computing Application

cuTensorNet …

Introducing cuQuantum

▪ cuQuantum is a platform for quantum computing
research

▪ Accelerate Quantum Circuit Simulators on GPUs

▪ Simulate ideal or noisy qubits

▪ Enable algorithms research with scale and
performance not possible on quantum hardware, or
on simulators today

▪ Open Beta available now

▪ Integrated with Cirq, Qiskit (December), Pennylane
(January)

Quantum Computing Frameworks (e.g., Cirq, Qiskit)

QPU

Quantum Circuit Simulators

(e.g., Qsim, Qiskit-aer)

cuQuantum

cuStateVec

GPU Accelerated Computing

Quantum Computing Application

cuTensorNet …

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

cuStateVec

▪ APIs are specifically designed for state vector

simulators, operating ‘in-place’ to save memory usage

▪ Preliminary benchmarks show ~10-20x improvement

over CPU implementations with a single GPU

▪ Covers common use cases including:

1) Measurement on a Z-product basis

2) Batched single qubit measurement

3) Apply gate matrix (facilitates gate fusion)

4) Apply exponential of Pauli matrix product

5) Expectation using matrix as observable

6) Sampling

7) Apply general permutation matrix

8) Apply diagonal matrix

9) Expectation on Pauli basis

10) State vector segment extraction

11) …

apply quantum gates to change the quantum state

Measure and collapse

the quantum state, and store

result (0 or 1) in the classical

register

q
u
a
n
tu

m
 r

e
g
is

te
rs

 (
q
u
b
it

s)

c
la

ss
ic

a
l

re
g
is

te
rs

(b
it

s)

A LIBRARY TO ACCELERATE STATE VECTOR BASED QUANTUM CIRCUIT SIMULATION

cuStateVec – SINGLE-GPU
PRELIMINARY PERFORMANCE OF Cirq/Qsim + cuStateVec ON THE A100

A100 80G vs 64 core CPU VQE speed-up relative to single CPU

Benchmarks run using Cirq/Qsim with modifications to integrate cuStateVec

CPUs used were AMD EPYC 7742 with 64 cores

QFT circuit with 32 qubits and depth 63

Shor’s circuit with 30 qubit and depth 15560 (integer factorized: 65)

Sycamore supremacy circuit m=14 with 7480 gates

0

6

10

1

1

16

1

 0

16 1 0 6 30 3

Sp
e
e
d
 u
p

 of qubits

Shor s

Sycamore Supremacy Circuit (m 1)

0

6

10

1

1

16

1

 0

 i (qubits) (10 qubits) C (1 qubits) C (qubits)

Sp
e
e
d
 u
p

VQE benchmarks have all orbitals and results were measured for the energy

function evaluation

Announcing DGX Quantum Appliance

cuQuantum

• Full Quantum Simulation Stack

• World class performance on key
quantum algorithms

• Available Q1 2022
• See

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8

Sp
ee

d
u

p

Number of GPUs

Multi-GPU Speed-up of Cirq with cuQuantum on DGX A100

Shor's (30 qubits) QFT (32 qubits) Sycamore (32 qubits)

MULTI-GPU CONTAINER WITH CIRQ/QSIM/CUQUANTUM

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

cuTensorNet
A LIBRARY TO ACCELERATE TENSOR NETWORK BASED QUANTUM CIRCUIT SIMULATION

▪ The cuTensorNet library initially will provide the

following APIs:

1. Given a tensor network definition calculate optimal

contraction path subject to memory constraints and

parallelization needs:

▪ Hyper-optimization is used to find contraction path

with lowest total cost (eg, FLOPS or time estimate)

▪ Slicing is introduced to create parallelism or reduce

maximum intermediate tensor sizes

2. Given a contraction path for a Tensor Network calculate

an optimized execution plan

▪ Leverages cuTENSOR heuristics

3. Execute the TN contraction

▪ cuTensorNet depends on the latest cuTENSOR

library for executing all pairwise contractions for

cuTENSOR

Tensor Network image from Quimb: https://quimb.readthedocs.io/en/latest/index.html

cuTensorNet
PRELIMINARY TENSOR NETWORK PATH OPTIMIZATION PERFORMANCE

[1] Gray & Kourtis, Hyper-optimized tensor network contraction, 2021 https://quantum-journal.org/papers/q-2021-03-15-410/pdf/

[2] opt-einsum https://pypi.org/project/opt-einsum/

▪ Path optimization cost is

amortized over many TN

contractions in a QCS

▪ Performance optimizations

within cuTensorNet allow

efficient exploration of the

solution space by its hyper-

optimizer

1 0 00

1 0 0

1 0 0

1 0 1

1 0 16

1 0 0

1 0

1 0

1 0 3

 1 (10) 1 () 0 (3)

 o
ta
l
C
o
n
tr
a
c
ti
o
n
 C
o
st

s

opt einsum auto opt einsum auto hq Cotengra cu ensor et

Sycamore Supremacy Circuit

https://quantum-journal.org/papers/q-2021-03-15-410/pdf/
https://pypi.org/project/opt-einsum/

cuTensorNet – SINGLE-GPU
PRELIMINARY PERFORMANCE DATA FOR TENSOR NETWORK CONTRACTION

0

4

8

12

16

20

24

Quantum deep neural

network (16 q)

GHZ state preparation

(23 q)

Ising model simulation

(26 q)

Quantum Fourier

Transform (15 q)

S
p
e
e
d
-u

p

Total Contraction Speed-up cuTensorNet vs. CuPy

cuTensorNet CoTenGra opt_einsum

Library used for path optimization

▪ Switching execution from CuPy to

cuTensorNet alone has big impact on

performance regardless of which path

optimization library is used

▪ Contraction performance of different

paths is also dependent on the ordering

▪ Performance optimizations within

cuTensorNet will allow exploration of a

larger solution space by its

hyperoptimizer

▪ Path optimization cost is amortized over

many TN contractions in a QCS

Benchmarks run using Cirq/Qsim with modifications to integrate upcoming multi-GPU APIs in cuStateVec

CPUs used were AMD EPYC 7742 with 64 cores each

The MaxCut Problem

Image courtesy Xanadu Inc.

https://pennylane.ai/qml/demos/tutorial_qaoa_maxcut.html

• NP-Complete combinatorial

optimization problem

• Applications include clustering,

network design, statistical physics, and

more

• Early target for hybrid variational quantum

algorithms

• QAOA proposed by Farhi et.al.: arxiv: 1411.4028

• Several HW demonstrations, including on Rigetti

19Q chip in 2017

Otterbach et. al. Unsupervised Machine Learning on a Hybrid

Quantum Computer. arxiv: 1712.05771rXiv:1712.05771

Simulating MaxCut using Tensor Networks

• Tensor Networks are a natural fit for MaxCut

• Fried et. al. (2017) https://arxiv.org/abs/1709.03636

• Huang et. al (2019) https://arxiv.org/pdf/1909.02559.pdf

• Lykov et. al. (2020) https://arxiv.org/pdf/2012.02430.pdf

• Patti et. al.(2021): NVIDIA Research proposes a novel variational

quantum algorithm

• Based on 1D tensor ring representation

• Multibasis encoding

• Able to find accurate solution for 512 vertices (256 qubits) on a

single GPU

Paper: https://arxiv.org/pdf/2106.13304.pdf

Code: https://github.com/tensorly/quantum

https://arxiv.org/pdf/2012.02430.pdf
https://arxiv.org/pdf/2106.13304.pdf

Scaling to a Supercomputer

 VIDIA’s Selene DGX Super D based supercomputer

[1] Danylo Lykov et al, Tensor Network Quantum Simulator With Step-Dependent Parallelization, 2020

https://arxiv.org/pdf/2012.02430.pdf

0

2000

4000

6000

8000

10000

12000

Category 1

Titolo del grafico

210
512

3,375

10,000

Previous largest

problem, Theta

Supercomputer [1]

Single GPU

97% Accuracy
Supercomputer

97% Accuracy

Supercomputer

93% Accuracy

Vertex Count

• Using VIDIA’s Selene supercomputer

• Solved a 3,375 vertex problem (1,688 qubits) with

97% accuracy

• Solved a 10,000 vertex problem (5,000 qubits)

with 93% accuracy

https://arxiv.org/pdf/2012.02430.pdf

Programming cuQuantum in C++

QCOR: A HPC-READY, C++ COMPILER FOR QUANTUM-CLASSICAL COMPUTING
Extend C++ with quantum kernels that can be compiled to available physical and simulation backends.

▪ Language extension to C++

▪ Leverage novel plugins to Clang for processing __qpu__ kernels

▪ Leverage existing C++ control flow semantics

▪ Translate kernels to XACC API calls

▪ Deployed first Quantum MLIR Dialect enabling language
lowering to the LLVM (Quantum Intermediate Representation)

▪ Enables OpenQASM 3 programming and compilation to hybrid
quantum-classical executable and library code

▪ Robust API for variational quantum programming

▪ Available under the new QIR Alliance

Clang

preprocessing, map

to XACC API calls

$ qcor –qpu custatevec qpe.cpp –shots 100

$./a.out

VARIATIONAL ALGORITHMS WITH QCOR
High-level API for defining variational algorithms with user input on the quantum Operator, state preparation circuit, and

classical optimization.

▪ Variational Quantum Eigensolver

▪ Used to compute minimal eigenvalue of given Hamiltonian

▪ Define a state preparation ansatz, parameterized to explore the
Hilbert space and search for ground eigenstate

▪ Ansatz measurements dictated by Hamiltonian structure

▪ In qcor

▪ State prep is a quantum kernel function, parameterized by
function arguments

▪ Easy mechanism for creating Hamiltonian Operator from existing
chemistry packages

▪ Define optimization functions via standard lambdas.

▪ Optimizer extension point, implemented to provide a wide variety
of classical optimization routines.

Compile and execute on physical architecture with

$ qcor –qpu ibm:ibmq_boeblingen qpe.cpp –shots 100

$./a.out

Compile and run on cuStateVec with

$ qcor –qpu custatevec qpe.cpp –shots 100

$./a.out

PROGRAMMING CUQUANTUM WITH OPENQASM 3
Build on the MLIR, lower languages to the LLVM adherent to the QIR specification

▪ Quantum Intermediate Representation

▪ Unified compiler representation embedded in the
LLVM IR

▪ Low-level target for language lowering

▪ MLIR and the Quantum Dialect

▪ Language-level representation for quantum
computing

▪ Progressive lowering from language-level IR to LLVM
IR adherent to the QIR specification

▪ Can mix dialects (specifically those for classical
control flow)

▪ Parse OpenQASM3, walk parse tree, generate MLIR
tree, transform / lower to LLVM IR

▪ Use LLVM toolchain to generate binary executable,
link to QIR implementation library

▪ cuStateVec backend enabled through existing
QCOR/XACC integration

Compile and run on cuStateVec with

$ qcor –qpu custatevec rwpe.qasm

$./a.out

Random-walk Phase Estimation

