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GPU-BASED SUPERCOMPUTING IN THE QC ECOSYSTEM
Researching the Quantum Computers of Tomorrow with the Supercomputers of Today

QUANTUM CIRCUIT SIMULATION
Critical tool for answering today’s most pressing questions 

in Quantum Information Science (QIS):

HYBRID CLASSICAL/QUANTUM APPLICATIONS
Impactful QC applications (e.g. simulating quantum materials and systems) 

will require classical supercomputers with quantum co-processors

+

• What quantum algorithms are most promising for near-term or long-term 
quantum advantage?

• What are the requirements (number of qubits and error rates) to realize 
quantum advantage?

• What quantum processor architectures are best suited to realize valuable 
quantum applications?

• How can we integrate and take advantage of classical HPC to accelerate 
hybrid classical/quantum workloads



QUANTUM CIRCUIT SIMULATION APPROACHES

State vector
“Gate-based emulation of a quantum computer”

• Maintain full 2n qubit vector state in memory

• Update all states every timestep, probabilistically sample n of 
the states for measurement

Memory capacity & time grow exponentially w/ # of qubits -
practical limit around 50 qubits on a supercomputer

Tensor network
“Only simulate the states you need”

• Use tensor network contractions to 
dramatically reduce memory for simulating circuits

• Can simulate 100s or 1000s of qubits for 
many practical quantum circuits

GPUs are a great fit for either approach



Introducing cuQuantum

▪ cuQuantum is an SDK of optimized libraries and 
tools for accelerating quantum computing 
workflows

▪ cuQuantum is not a:

▪ Quantum Computer

▪ Quantum Computing Framework

▪ Quantum Circuit Simulator

Quantum Computing Frameworks (e.g., Cirq, Qiskit)

QPU

Quantum Circuit Simulators

(e.g., Qsim, Qiskit-aer)

cuQuantum

cuStateVec

GPU Accelerated Computing

Quantum Computing Application

cuTensorNet …



Introducing cuQuantum

▪ cuQuantum is a platform for quantum computing 
research

▪ Accelerate Quantum Circuit Simulators on GPUs

▪ Simulate ideal or noisy qubits

▪ Enable algorithms research with scale and 
performance not possible on quantum hardware, or 
on simulators today

▪ Open Beta available now

▪ Integrated with Cirq, Qiskit (December), Pennylane
(January)

Quantum Computing Frameworks (e.g., Cirq, Qiskit)

QPU

Quantum Circuit Simulators

(e.g., Qsim, Qiskit-aer)

cuQuantum

cuStateVec

GPU Accelerated Computing

Quantum Computing Application

cuTensorNet …
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cuStateVec

▪ APIs are specifically designed for state vector 

simulators, operating ‘in-place’ to save memory usage

▪ Preliminary benchmarks show ~10-20x improvement 

over CPU implementations with a single GPU 

▪ Covers common use cases including:

1) Measurement on a Z-product basis

2) Batched single qubit measurement

3) Apply gate matrix (facilitates gate fusion)

4) Apply exponential of Pauli matrix product

5) Expectation using matrix as observable

6) Sampling

7) Apply general permutation matrix

8) Apply diagonal matrix

9) Expectation on Pauli basis

10) State vector segment extraction

11) …

apply quantum gates to change the quantum state

Measure and collapse 

the quantum state, and store 

result (0 or 1) in the classical 

register
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A LIBRARY TO ACCELERATE STATE VECTOR BASED QUANTUM CIRCUIT SIMULATION



cuStateVec – SINGLE-GPU
PRELIMINARY PERFORMANCE OF Cirq/Qsim + cuStateVec ON THE A100

A100 80G vs 64 core CPU VQE speed-up relative to single CPU

Benchmarks run using Cirq/Qsim with modifications to integrate cuStateVec

CPUs used were AMD EPYC 7742 with 64 cores

QFT circuit with 32 qubits and depth 63

Shor’s circuit with 30 qubit and depth 15560 (integer factorized: 65)

Sycamore supremacy circuit m=14 with 7480 gates
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function evaluation



Announcing DGX Quantum Appliance

cuQuantum

• Full Quantum Simulation Stack 

• World class performance on key 
quantum algorithms

• Available Q1 2022
• See

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8

Sp
ee

d
u

p

Number of GPUs

Multi-GPU Speed-up of Cirq with cuQuantum on DGX A100

Shor's (30 qubits) QFT (32 qubits) Sycamore  (32 qubits)

MULTI-GPU CONTAINER WITH CIRQ/QSIM/CUQUANTUM
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cuTensorNet
A LIBRARY TO ACCELERATE TENSOR NETWORK BASED QUANTUM CIRCUIT SIMULATION

▪ The cuTensorNet library initially will provide the 

following APIs:

1. Given a tensor network definition calculate optimal 

contraction path subject to memory constraints and 

parallelization needs:

▪ Hyper-optimization is used to find contraction path 

with lowest total cost (eg, FLOPS or time estimate)

▪ Slicing is introduced to create parallelism or reduce 

maximum intermediate tensor sizes

2. Given a contraction path for a Tensor Network calculate 

an optimized execution plan

▪ Leverages cuTENSOR heuristics

3. Execute the TN contraction

▪ cuTensorNet depends on the latest cuTENSOR 

library for executing all pairwise contractions for 

cuTENSOR

Tensor Network image from Quimb: https://quimb.readthedocs.io/en/latest/index.html



cuTensorNet
PRELIMINARY TENSOR NETWORK PATH OPTIMIZATION PERFORMANCE

[1] Gray & Kourtis, Hyper-optimized tensor network contraction, 2021 https://quantum-journal.org/papers/q-2021-03-15-410/pdf/

[2] opt-einsum https://pypi.org/project/opt-einsum/

▪ Path optimization cost is 

amortized over many TN 

contractions in a QCS

▪ Performance optimizations 

within cuTensorNet allow 

efficient exploration of the 

solution space by its hyper-

optimizer
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cuTensorNet – SINGLE-GPU
PRELIMINARY PERFORMANCE DATA FOR TENSOR NETWORK CONTRACTION
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Library used for path optimization

▪ Switching execution from CuPy to 

cuTensorNet alone has big impact on 

performance regardless of which path 

optimization library is used

▪ Contraction performance of different 

paths is also dependent on the ordering

▪ Performance optimizations within 

cuTensorNet will allow exploration of a 

larger solution space by its 

hyperoptimizer

▪ Path optimization cost is amortized over 

many TN contractions in a QCS

Benchmarks run using Cirq/Qsim with modifications to integrate upcoming multi-GPU APIs in cuStateVec

CPUs used were AMD EPYC 7742 with 64 cores each



The MaxCut Problem

Image courtesy Xanadu Inc.

https://pennylane.ai/qml/demos/tutorial_qaoa_maxcut.html

• NP-Complete combinatorial 

optimization problem

• Applications include clustering, 

network design, statistical physics, and  

more

• Early target for hybrid variational quantum 

algorithms

• QAOA proposed by Farhi et.al.: arxiv: 1411.4028

• Several HW demonstrations, including on Rigetti

19Q chip in 2017

Otterbach et. al. Unsupervised Machine Learning on a Hybrid 

Quantum Computer. arxiv: 1712.05771rXiv:1712.05771



Simulating MaxCut using Tensor Networks

• Tensor Networks are a natural fit for MaxCut

• Fried et. al. (2017) https://arxiv.org/abs/1709.03636

• Huang et. al (2019) https://arxiv.org/pdf/1909.02559.pdf

• Lykov et. al. (2020) https://arxiv.org/pdf/2012.02430.pdf

• Patti et. al.(2021): NVIDIA Research proposes a novel variational 

quantum algorithm

• Based on 1D tensor ring representation

• Multibasis encoding

• Able to find accurate solution for 512 vertices (256 qubits) on a 

single GPU

Paper: https://arxiv.org/pdf/2106.13304.pdf

Code: https://github.com/tensorly/quantum

https://arxiv.org/pdf/2012.02430.pdf
https://arxiv.org/pdf/2106.13304.pdf


Scaling to a Supercomputer

 VIDIA’s Selene DGX Super  D based supercomputer

[1] Danylo Lykov et al, Tensor Network Quantum Simulator With Step-Dependent Parallelization, 2020

https://arxiv.org/pdf/2012.02430.pdf
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Vertex Count

• Using  VIDIA’s Selene supercomputer

• Solved a 3,375 vertex problem (1,688 qubits) with 

97% accuracy

• Solved a 10,000 vertex problem (5,000 qubits) 

with 93% accuracy

https://arxiv.org/pdf/2012.02430.pdf


Programming cuQuantum in C++



QCOR: A HPC-READY, C++ COMPILER FOR QUANTUM-CLASSICAL COMPUTING
Extend C++ with quantum kernels that can be compiled to available physical and simulation backends.

▪ Language extension to C++

▪ Leverage novel plugins to Clang for processing __qpu__ kernels

▪ Leverage existing C++ control flow semantics

▪ Translate kernels to XACC API calls

▪ Deployed first Quantum MLIR Dialect enabling language 
lowering to the LLVM (Quantum Intermediate Representation)

▪ Enables OpenQASM 3 programming and compilation to hybrid 
quantum-classical executable and library code

▪ Robust API for variational quantum programming

▪ Available under the new QIR Alliance

Clang 

preprocessing, map 

to XACC API calls

$ qcor –qpu custatevec qpe.cpp –shots 100

$ ./a.out



VARIATIONAL ALGORITHMS WITH QCOR
High-level API for defining variational algorithms with user input on the quantum Operator, state preparation circuit, and 

classical optimization.

▪ Variational Quantum Eigensolver

▪ Used to compute minimal eigenvalue of given Hamiltonian

▪ Define a state preparation ansatz, parameterized to explore the 
Hilbert space and search for ground eigenstate

▪ Ansatz measurements dictated by Hamiltonian structure

▪ In qcor

▪ State prep is a quantum kernel function, parameterized by 
function arguments

▪ Easy mechanism for creating Hamiltonian Operator from existing 
chemistry packages

▪ Define optimization functions via standard lambdas.

▪ Optimizer extension point, implemented to provide a wide variety 
of classical optimization routines. 

Compile and execute on physical architecture with

$ qcor –qpu ibm:ibmq_boeblingen qpe.cpp –shots 100

$ ./a.out

Compile and run on cuStateVec with 

$ qcor –qpu custatevec qpe.cpp –shots 100

$ ./a.out



PROGRAMMING CUQUANTUM WITH OPENQASM 3
Build on the MLIR, lower languages to the LLVM adherent to the QIR specification

▪ Quantum Intermediate Representation

▪ Unified compiler representation embedded in the 
LLVM IR

▪ Low-level target for language lowering

▪ MLIR and the Quantum Dialect

▪ Language-level representation for quantum 
computing

▪ Progressive lowering from language-level IR to LLVM 
IR adherent to the QIR specification

▪ Can mix dialects (specifically those for classical 
control flow)

▪ Parse OpenQASM3, walk parse tree, generate MLIR 
tree, transform / lower to LLVM IR

▪ Use LLVM toolchain to generate binary executable, 
link to QIR implementation library

▪ cuStateVec backend enabled through existing 
QCOR/XACC integration

Compile and run on cuStateVec with 

$ qcor –qpu custatevec rwpe.qasm

$ ./a.out

Random-walk Phase Estimation




