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« A Quantum Annealer is a special purpose
quantumcomputer

* [ts purpose, unlike the quantum computers
seen in the previous lessons, called General
Purpose Quantum Computers, is nottobe
freelyprogrammed by the user.

« A Quantum Annealer is a quantum computer
designed and built to host a single quantum
algorithm, Quantum Annealing
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The Quantum Annealing Algorithm

The quantum annealing algorithm was proposed
for the first time in 1998 with the paper you see in
the figure.

PHYSICAL REVIEW E

VOLUME 58, NUMBER 5

NOVEMBER 1998

Quantum annealing in the transverse Ising model

Tadashi Kadowaki and Hidetoshi Nishimori
Department of Physics, Tokye Institute of Technology, Oh-okavama, Meguro-ku, Tokyo 152-8531, Japan
(Received 30 April 1998)

We introduce quantum fuctuations into the simulated annealing process of optimization problems, aiming at
faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the
same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse Ising
maodel, in which the transverse field is a function of time similar to the temperature in the conventional method.
The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as
possible. We have solved the time-dependent Schrodinger equation numerically for small size systems with
various exchange interactions. Comparison with the results of the corresponding classical (thermal) method
reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if
we use the same annealing schedule. [S1063-651X(98)02910-9]

PACS number(s): 05.30.—d, 75.10.Nr, 89.70. +¢

L INTRODUCTION

The technique of simulated annealing (SA) was first pro-
posed by Kirkpatrick er al. [1] as a general method to solve
optimization problems. The idea i1s to use thermal fluctua-
tions to allow the system to escape from local minima of the
cost function so that the system reaches the global minimum
under an appropriate annealing schedule (the rate of decrease
of temperature). If the temperature is decreased too quickly,
the system may become trapped in a local minimum. Too
slow annealing, on the other hand, is practically useless al-
though such a process would certainly bring the system to
the global minimum. Geman and Geman proved a theorem
on the annealing schedule for a generic problem of combi-
natorial optimization [2]. They showed that any system
reaches the global minimum of the cost function asymptoti-
cally 1if the temperature 1s decreased as T'=c/In 1 or slower,
where ¢ 1s a constant determined by the system size and
other structures of the cost function. This bound on the an-
nealing schedule may be the optimal one under generic con-

specific model system, rather than to develop a general argu-
ment, to gain insight into the role of quantum fluctuations in
the situation of optimization problem. Quantum effects have
been found to play a very similar role to thermal fluctuations
in the Hopfield model in a transverse field in thermal equi-
librium [5]. This observation motivates us to investigate dy-
namical properties of the Ising model under quantum fluc-
tuations in the form of a transverse field. We therefore
discuss in this paper the transverse Ising model with a var-
ety of exchange interactions. The transverse field controls the
rate of transition between states and thus plays the same role
as the temperature does in SA. We assume that the system
has no thermal fluctuations in the QA context and the term
“ground state’’ refers to the lowest-energy state of the
Hamiltonian without the transverse field term.

Static properties of the transverse Ising model have been
investigated quite extensively for many years [6]. There
have, however, been very few studies on the dynamical be-
havior of the Ising model with a transverse field. We refer to
the work by Sato er al. who carried out quantum Monte
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Variable X
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« Quantum Annealing is the quantum version of

simulated annealing starting point
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Quantum Annealing

« Quantum Annealing is the quantum version of

simulated annealing starting point

« The principle of quantum mechanics that is most
exploited during the run of a quantum annealing
is the phenomenon of quantumtunneling
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Quantum Annealing

Quantum Annealing is the quantum version of
simulated annealing

The principle of guantum mechanics that is most
exploited during the run of a quantum annealing
is the phenomenon of quantumtunneling

Visually, we can consider the quantum annealing
process as a simulated annealing process where
the ball, a macroscopic object, is replaced by a
microscopic particle.

Objective Function f(X)
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Quantum Annealing

Quantum Annealing is the quantum version of
simulated annealing

The principle of guantum mechanics that is most
exploited during the run of a quantum annealing
is the phenomenon of quantumtunneling

Visually, we can consider the quantum annealing
process as a simulated annealing process where
the ball, a macroscopic object, is replaced by a
microscopic particle.
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Quantum Annealing

Quantum Annealing is the quantum version of
simulated annealing

The principle of guantum mechanics that is most
exploited during the run of a quantum annealing
is the phenomenon of quantumtunneling

Visually, we can consider the quantum annealing
process as a simulated annealing process where
the ball, a macroscopic object, is replaced by a
microscopic particle.

Objective Function f(X)
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Quantum Annealing

Quantum Annealing is the quantum version of
simulated annealing

The principle of guantum mechanics that is most
exploited during the run of a quantum annealing
is the phenomenon of quantumtunneling

Visually, we can consider the quantum annealing
process as a simulated annealing process where
the ball, a macroscopic object, is replaced by a
microscopic particle.

Objective Function f(X)
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Quantum Annealing

Quantum Annealing is the quantum version of
simulated annealing

The principle of guantum mechanics that is most
exploited during the run of a quantum annealing
is the phenomenon of quantumtunneling

Visually, we can consider the quantum annealing
process as a simulated annealing process where
the ball, a macroscopic object, is replaced by a
microscopic particle.

starting point

perturbation
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Quantum Annealing

Quantum Annealing is the quantum version of
simulated annealing

The principle of guantum mechanics that is most
exploited during the run of a quantum annealing
is the phenomenon of quantumtunneling

Visually, we can consider the quantum annealing
process as a simulated annealing process where
the ball, a macroscopic object, is replaced by a
microscopic particle.

How does the Quantum Annealing process work?
The core of the algorithm is in the Adiabatic
Theorem:

A physical system remains in its instantaneous
eigenstate if a given perturbation is acting on it
slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian's
spectrum

starting point

perturbation
andjump

perturbation
andjump
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Quantum Annealing

« Optimization through quantum annealing begins
with choosing an objective function different than
the one you want to optimize.

Objective Function f(X)
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Quantum Annealing

« Optimization through quantum annealing begins
with choosing an objective function different than
the one you want to optimize.

« The choice always falls on a simple function, of
which the global minimum is known (for example).
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Quantum Annealing

« Optimization through quantum annealing begins
with choosing an objective function different than
the one you want to optimize.

« The choice always falls on a simple function, of
which the global minimum is known (for example).

« The annealing process consists in slowly
modifying the objective function to gradually
change its shape
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Quantum Annealing

« Optimization through quantum annealing begins
with choosing an objective function different than
the one you want to optimize.

« The choice always falls on a simple function, of
which the global minimum is known (for example).

« The annealing process consists in slowly
modifying the objective function to gradually
change its shape

» The process lasts until the initial objective
function becomes equivalent to the objective
function whose you really want to optimize

Objective Function f(X)
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Quantum Annealing

 QOptimization through quantum annealing begins
with choosing an objective function different than
the one you want to optimize.

« The choice always falls on a simple function, of
which the global minimum is known (for example).

« The annealing process consists in slowly
modifying the objective function to gradually
change its shape

« The process lasts until the initial objective
function becomes equivalent to the objective
function whose you really want to optimize

Objective Function f(X)

« Iftheannealingtook place slowly enough, the
adiabatic theorem assures usthatinall the
transformation phases of the objective function
the global minimum point has adapted tothe
shape of the function Variable X

CINECA (Q)2SiTntc e



Quantum Annealing

« Optimization through quantum annealing begins ,
with choosing an objective function differentthan — () 23(‘) + () Zh.é}() + 1.5 ~(1) ~ (1)
the one you want to optimize. 2 . 2 LT iy 1i%=

" '

» The choice always falls on a simplefunction,of 1 .. 7 w00 i/eomicn Finod Hamiltonicn

which the global minimum is known (for example).

« The annealing process consists in slowly
modifying the objective function to gradually
change its shape

» The process lasts until the initial objective
function becomes equivalent to the objective
function whose you really want to optimize

nction f(X)

Objective Fu

« Iftheannealingtook place slowly enough, the
adiabatic theorem assures usthatinall the
transformation phases of the objective function

Variable X

the global minimum point has adapted tothe
shape of the function
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The Quantum Annealer

Currently, we can talk about The quantum
annealer and not about a generic quantum
annealer sincetoday thereis only one
manufacturer for this type of device.
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The Quantum Annealer

Currently, we can talk about The quantum
annealer and not about a generic quantum
annealer sincetoday thereis only one
manufacturer for this type of device.

The company in question is called D-Wave

At the moment the latest quantum annealer
model has more than 5000 qubits and about
30,000 connectors
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The Quantum Annealer

« (Currently, we can talk about The quantum
annealer and not about a generic quantum
annealer sincetoday thereis only one
manufacturer for this type of device.

« The company in question is called D-Wave

« At the moment the latest quantum annealer
model has more than 5000 qubits and about
30,000 connectors

« We will see in the course of the lesson the
importance of these numbers
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« (Currently, we can talk about The quantum
annealer and not about a generic quantum
annealer sincetoday thereis only one
manufacturer for this type of device.

« The company in question is called D-Wave

« At the moment the latest quantum annealer
model has more than 5000 qubits and about
30,000 connectors

« We will see in the course of the lesson the
importance of these numbers

« To understand how to interact with a quantum
annealer, we need the following concepts:
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annealer sincetoday thereis only one
manufacturer for this type of device.
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The Quantum Annealer

« Currently, we can talk about The quantum
annealer and not about a generic quantum
annealer sincetoday thereis only one
manufacturer for this type of device.

« The company in question is called D-Wave

« At the moment the latest quantum annealer
model has more than 5000 qubits and about
30,000 connectors

« We will see in the course of the lesson the
importance of these numbers

« To understand how to interact with a quantum
annealer, we need the following concepts:
Objective functions
|sing model (Ising Hamiltonian)
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The Quantum Annealer

« Currently, we can talk about The quantum
annealer and not about a generic quantum
annealer sincetoday thereis only one
manufacturer for this type of device.

« The company in question is called D-Wave

« At the moment the latest quantum annealer
model has more than 5000 qubits and about
30,000 connectors

« We will see in the course of the lesson the
importance of these numbers

« To understand how to interact with a quantum
annealer, we need the following concepts:
Objective functions
|sing model (Ising Hamiltonian)

Quadratic Unconstrained Binary Optimization problems
(QUBO problems)
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The Quantum Annealer

« Currently, we can talk about The quantum
annealer and not about a generic quantum
annealer sincetoday thereis only one
manufacturer for this type of device.

« The company in question is called D-Wave

« At the moment the latest quantum annealer
model has more than 5000 qubits and about
30,000 connectors

« We will see in the course of the lesson the
importance of these numbers

« To understand how to interact with a quantum
annealer, we need the following concepts:
Objective functions
|sing model (Ising Hamiltonian)

Quadratic Unconstrained Binary Optimization problems
(QUBO problems)

Graphs and embedding
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Objective Function

To express a problem in a form that allows its
resolution through quantum annealing, we need
first of all an objective function

Energy

Global Minimum

Local Minimum

Solution Space
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Objective Function

To express a problem in a form that allows its
resolution through quantum annealing, we need
first of all an objective function

An objective function is a mathematical
expression of the energy of a system. Put simply,
it represents the function whose minimum you
want to find
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Objective Function

To express a problem in a form that allows its
resolution through quantum annealing, we need
first of all an objective function,

An objective function is a mathematical
expression of the energy of a system. Put simply,
it represents the function whose minimum you
want to find

When the solver is a QPU, energy is a function of
the binary variables that represent its qubits; for
classical quantum hybrid solvers, energy might
be a more abstract function.

Energy

Global Minimum

Local Minimum

Solution Space
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Objective Function

» Toexpress a problem in a form that allows its
resolution through quantum annealing, we need

. 2 : Global Minimum
first of all an objective function,

« Anobjective function is a mathematical
expression of the energy of a system. Put simply,
it represents the function whose minimum you
want to find

Energy

« When the solveris a QPU, energy is a function of .
the binary variables that represent its qubits; for Local Minimum
classical quantum hybrid solvers, energy might
be a more abstract function. Solution Space

« For most problems, the lower the energy of the
objective function, the better the solution.
Sometimes any state of local minimum for
energy is an acceptable solution to the original
problem; for other problems only optimal
solutions are acceptable.
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Objective Function

Expressing a problem through a minimizable
objective function means thinking of every
problem as a minimization problem

Energy

Global Minimum

Local Minimum

Solution Space

X+ 1=2

vin[2 = (x+ )]
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Objective Function

Expressing a problem through a minimizable
objective function means thinking of every
problem as a minimization problem

Mathematically speaking, this is always a
possible operation

Energy

Global Minimum
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Objective Function

« Expressing a problem through a minimizable
objective function means thinking of every
problem as a minimization problem

« Mathematically speaking, this is always a
possible operation

 Although, in some cases it becomes very difficult.

Energy

Global Minimum

Local Minimum

Solution Space

X+ 1=2

vin[2 = (x+ )]
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Objective Function

« Expressing a problem through a minimizable
objective function means thinking of every
problem as a minimization problem

« Mathematically speaking, this is always a
possible operation

 Although, in some cases it becomes very difficult.

« The objective functions accepted by the quantum
annealer of D-Wave are of two types (equivalent
to each other): Ising Hamiltonians and QUBO
formulations

Energy

Global Minimum

Local Minimum

Solution Space

X+ 1=2

vin[2 = (x+ )]
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Ising Model

« The Ising Model is a well-known model in statistical mechanics.
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Ising Model

« The Ising Model is a well-known model in statistical mechanics.

 Quadratic and binary model, an Ising Hamiltonian has as variables +1 and -1 (commonly called spin variables:
spin up for the value +1, spin down for the value -1).
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Ising Model

« The Ising Model is a well-known model in statistical mechanics.

 Quadratic and binary model, an Ising Hamiltonian has as variables +1 and -1 (commonly called spin variables:
spin up for the value +1, spin down for the value -1).

« The relationships between the spins, represented by the coupling values of the Hamiltonian, represent the
correlations or anti-correlations.
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Ising Model

« The Ising Model is a well-known model in statistical mechanics.

 Quadratic and binary model, an Ising Hamiltonian has as variables +1 and -1 (commonly called spin variables:
spin up for the value +1, spin down for the value -1).

« The relationships between the spins, represented by the coupling values of the Hamiltonian, represent the
correlations or anti-correlations.

« Mathematically, it is expressed in this form

Eisimg(s) = Z'fhs + E?;[ Z[.; ILIsLsI
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Ising Model

« The Ising Model is a well-known model in statistical mechanics.

 Quadratic and binary model, an Ising Hamiltonian has as variables +1 and -1 (commonly called spin variables:
spin up for the value +1, spin down for the value -1).

« The relationships between the spins, represented by the coupling values of the Hamiltonian, represent the
correlations or anti-correlations.

« Mathematically, it is expressed in this form

Eisimg(s) = Z'fhs + E?;[ Z[.; ILIsLsI

» Where the coefficients h represent the bias values associated with the qubits and the coefficients J represent
the strength of the coupling bonds
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Game of Switches

« The switch game is a very simple game that
can help you understand the nature of an
optimization problem that can be solved by a
quantum annealer.
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« The switch game is a very simple game that
can help you understand the nature of an
optimization problem that can be solved by a
quantum annealer.

« Suppose we have a certain number of
switches, each settable on two possible states

@ represented by the values 1 and -1
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Game of Switches

« The switch game is a very simple game that
can help you understand the nature of an
optimization problem that can be solved by a
quantum annealer.

« Suppose we have a certain number of
switches, each settable on two possible states

@ represented by the values 1 and -1
[]s

» Furthermore, each switch has a univocally

Q_ 4 associated weight
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Game of Switches
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h = ‘bias’ value s =the ON/OFF
associated with setting of each
each switch switch,+1 or -1
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Game of Switches

The switch game is a very simple game that
can help you understand the nature of an
optimization problem that can be solved by a
quantum annealer.

Suppose we have a certain number of
switches, each settable on two possible states
represented by the values 1 and -1

Furthermore, each switch has a univocally
associated weight

The value of a switch is calculated by
multiplying its weight by its state
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Game of Switches

The switch game is a very simple game that
can help you understand the nature of an
optimization problem that can be solved by a
quantum annealer.

Suppose we have a certain number of
switches, each settable on two possible states
represented by the values 1 and -1

Furthermore, each switch has a univocally
associated weight

The value of a switch is calculated by
multiplying its weight by its state

The game consists in finding the combination
of states for the switches such that the sum of
their values is as low as possible
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Game of Switches
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h = ‘bias’ value s =the ON/OFF
associated with setting of each
each switch switch,+1 or -1
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Game of Switches

+1
+0.2
+0.5
-0.8
+0.4
-0.7

A S A A A

-1 = -1
-1 = -0.2
-1 = -0.5
+1 = -0.8
-1 = 04
+1 = -0.7
Total: -3.6
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Game of Switches

Let us now consider another factor, namely
the presence of couplers between the
switches
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Game of Switches

 Let us now consider another factor, namely
the presence of couplers between the
switches

° U ° « Couplers, just like switches, are endowed with
a certain numerical weight

9. o

—

, U : 1:;’ ;
Q.
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Game of Switches

Let us now consider another factor, namely
the presence of couplers between the
switches

Couplers, just like switches, are endowed with
a certain numerical weight

The value of the couplers is given by their own
weight multiplied by the state of the switches
to which the coupler is associated
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Game of Switches

Adding another weight, J, which
multiplies the product of the two
switch settings.
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Game of Switches

 Let us now consider another factor, namely
the presence of couplers between the
switches

« Couplers, just like switches, are endowed with
a certain numerical weight

« The value of the couplers is given by their own
weight multiplied by the state of the switches
to which the coupler is associated

* Inour case, the coupler will therefore have a
state -1 if the two switches it connects are
discordant, +1 otherwise
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Game of Switches

 Let us now consider another factor, namely
the presence of couplers between the
switches

Couplers, just like switches, are endowed with
a certain numerical weight

The value of the couplers is given by their own
weight multiplied by the state of the switches
to which the coupler is associated

* Inour case, the coupler will therefore have a
state -1 if the two switches it connects are
discordant, +1 otherwise

« We therefore add to the quantity to be
minimized the contribution introduced by the
couplers
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Game of Switches
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Adding another weight, J, which
@ multiplies the product of the two

switch settings.
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Game of Switches

0.25752 - 0.75253+

0.75554 + 5,5,
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Game of Switches

2 switches = 2% =
4 possible answers

o ] o

L

CINECA (Q)2SiTntc e



Game of Switches

2 switches = 2% =
4 possible answers

@ ]
10 switches = 210 = D

1024 possible answers L
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Game of Switches

2 switches = 2% =
4 possible answers

@ ]
10 switches = 210 = D

1024 possible answers

100 switches = 2100 =
1,267,650,600,228,229,401,496,703,205,376
possible answers
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QUBO Problems

« QUBO (Quadratic Unconstrained Binary Optimization) problems are well known problems in the field of
combinatorial optimization.
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QUBO Problems

« QUBO (Quadratic Unconstrained Binary Optimization) problems are well known problems in the field of
combinatorial optimization.

« A QUBO problem is defined by a matrix Q (upper triangular) and a vector of binary variables x.

CINECA (Q)2SiTntc e



QUBO Problems

« QUBO (Quadratic Unconstrained Binary Optimization) problems are well known problems in the field of
combinatorial optimization.

« A QUBO problem is defined by a matrix Q (upper triangular) and a vector of binary variables x.

e |ts mathematical form is
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QUBO Problems

« QUBO (Quadratic Unconstrained Binary Optimization) problems are well known problems in the field of
combinatorial optimization.

« A QUBO problem is defined by a matrix Q (upper triangular) and a vector of binary variables x.
 |ts mathematical formis

F(X) ZQLL X i‘j i,jxixj

« Where the diagonal terms of the matrix Q play the role of linear coefficients while the other non-zero elements
are the quadratic coefficients.

CINECA (Q)2SiTntc e



QUBO Problems

« QUBO (Quadratic Unconstrained Binary Optimization) problems are well known problems in the field of
combinatorial optimization.

« A QUBO problem is defined by a matrix Q (upper triangular) and a vector of binary variables x.
 |ts mathematical formis

F(X) ZQLL X i‘j i,jxixj

« Where the diagonal terms of the matrix Q play the role of linear coefficients while the other non-zero elements
are the quadratic coefficients. In matrix form

min XTQX.
xE{0,1}"
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QUBO Problems

« To familiarize yourself with the QUBO formulation, let's
make an example of a realistic problem whose
structure can be mapped in this form
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QUBO Problems

To familiarize yourself with the QUBO formulation, let's
make an example of a realistic problem whose
structure can be mapped in this form

Suppose we have a certain number of antennas and a
certain number of possible sites to place these
antennas.
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QUBO Problems

To familiarize yourself with the QUBO formulation, let’s
make an example of a realistic problem whose
structure can be mapped in this form

Suppose we have a certain number of antennas and a
certain number of possible sites to place these
antennas.

Each antenna with its signal can cover a certain area.
When multiple signals overlap, however, unpleasant
interference is generated

CINECA ©

QUANTUM
COMPUTING LAB



QUBO Problems

To familiarize yourself with the QUBO formulation, let’s
make an example of a realistic problem whose
structure can be mapped in this form

Suppose we have a certain number of antennas and a
certain number of possible sites to place these
antennas.

Each antenna with its signal can cover a certain area.
When multiple signals overlap, however, unpleasant
interference is generated

Ourtaskisto position the antennas in order to maximize
the surface covered by the signal and at the same time
minimize interference between the antennas.
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QUBO Problems

We define;

« The area covered by a single antenna such as the area of the circle whose radius is the parameter that
describes the range of action of each individual antenna (problem data)
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QUBO Problems

We define:
« The area covered by a single antenna such as the area of the circle whose radius is the parameter that
describes the range of action of each individual antenna (problem data)

« The interference surface between two antennas as the area of the circle whose radius is given by the following
formula

Py = max | 0,y — dist | ¢, C;
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QUBO Problems

We define;

« The area covered by a single antenna such as the area of the circle whose radius is the parameter that
describes the range of action of each individual antenna (problem data)

« The interference surface between two antennas as the area of the circle whose radius is given by the following
formula

Py = max | 0,y — dist | ¢, C;

- where r;and r; are the parameters relating to the range of action of the antennas i andj and dist(c;, ¢;) is the
distance between the points where the antennas are positioned
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QUBO Problems
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QUBO Problems

py = van {05, 4 ‘.}
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QUBO Problems

 With the definition of the rho radius, we can define the
interference area between the overlap of two antennas i and |
as

— 2
Btj Ptj Tt
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QUBO Problems

 With the definition of the rho radius, we can define the
interference area between the overlap of two antennas i and |
as

— 2
Btj Ptj Tt

« Now we just have to model the antennas with the help of a
vector of binary variables. We simply associate a binary
variable g; with each possible site. The variable will take the
value 1 if itis a place where it is recommended to install an
antenna, 0 otherwise
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QUBO Problems

 With the definition of the rho radius, we can define the
interference area between the overlap of two antennas i and |
as

— 2
Btj Ptj Tt

« Now we just have to model the antennas with the help of a
vector of binary variables. We simply associate a binary
variable g; with each possible site. The variable will take the
value 1 if itis a place where it is recommended to install an
antenna, 0 otherwise

[%* o Clm]
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QUBO Problems

« Let's formulate our problem. At this stage, we must always
think about a minimization problem. To maximize, simply
reverse the sign. Keeping in mind that
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QUBO Problems

« Let's formulate our problem. At this stage, we must always
think about a minimization problem. To maximize, simply
reverse the sign. Keeping in mind that
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QUBO Problems

« Let's formulate our problem. At this stage, we must always
think about a minimization problem. To maximize, simply
reverse the sign. Keeping in mind that

2 = 42 .
A = By Py T

BUB0 =
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QUBO Problems

« Let's formulate our problem. At this stage, we must always
think about a minimization problem. To maximize, simply
reverse the sign. Keeping in mind that

2 = 42 .
A = By Py T

e Minimizeinterference
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QUBO Problems

« Let's formulate our problem. At this stage, we must always
think about a minimization problem. To maximize, simply
reverse the sign. Keeping in mind that

« Maximizecoveringarea

N
AURO = Z?Atiqi + ;Bijqiqj

(=0 (<]
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QUBO Problems

« Let's formulate our problem. At this stage, we must always
think about a minimization problem. To maximize, simply
reverse the sign. Keeping in mind that

« Maximizecoveringarea

N
AURO = — Z?Atiqi + ;Bijqiqj
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QUBO Problems

« Let's formulate our problem. At this stage, we must always
think about a minimization problem. To maximize, simply
reverse the sign. Keeping in mind that

« Maximizecoveringarea

N
QUBO — _Z’Aiqt + aZBLIqu}

(=0 (<]
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QUBO/ISING Equivalency

« Any QUBO problem can be easily mapped into an ISING problem through simple equivalence
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QUBO/ISING Equivalency

« Any QUBO problem can be easily mapped into an ISING problem through simple equivalence

N
s, 2% — 1 E‘isihg(s) :§his Z, Z,I 1555
= =]r={(+
o+ L =177t
.
i 2 E‘QU’EO(X) ZO‘LL i + 20, L, %1%
<]
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QUBO/ISING Equivalency

Any QUBO problem can be easily mapped into an ISING problem through simple equivalence

N
s, 2% — 1 E‘isihg(s) :‘%hts Z{ Z ,I 551
= =13={+
o+ L =177t
—
% 2 E‘QU’EO(X) ZO‘LL i th,jxixj
<]

« More generally, any mathematical problem can be mapped into a QUBO problem
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QUBO/ISING Equivalency

« Any QUBO problem can be easily mapped into an ISING problem through simple equivalence

N N N
= '_’2Xi — ] Eisi»«.g(s) :Zhist + Z Z I,ISLSI
=1 (=1§=iH]
s, 1
. >
% 2 E‘QU’EO(X) ZO‘LL i th,jxixj
(4]

« More generally, any mathematical problem can be mapped into a QUBO problem
 You just have to understand if it's worth it ;)
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Programming a Quantum Annealer

PyQUBO is a python library, with a C ++ backend, written by DWAVE to use its quantum annealer.
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Programming a Quantum Annealer

« PyQUBO is a python library, with a C ++ backend, written by DWAVE to use its quantum annealer.

e |nstallation:

pip install pyqubo
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Programming a Quantum Annealer

« PyQUBO is a python library, with a C ++ backend, written by DWAVE to use its quantum annealer.

e |nstallation:

pip install pyqubo

« PyQUBQ is a very handy utility for writing problems in QUBO or ISING form. Let's see how to use it
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Programming a Quantum Annealer

« PyQUBO is a python library, with a C ++ backend, written by DWAVE to use its quantum annealer.

e |nstallation:

pip install pyqubo
« PyQUBQ is a very handy utility for writing problems in QUBO or ISING form. Let's see how to use it

« Variables: Type Binary (0/1)

>>> from pyqubo import Binary

»>> X1, x2 = Binary('x1'), Binary('x2")

>»> H = 2%x1%*x2 + 3*x1

>>> pprint(H.compile().to qubo()) # doctest: +SKIP

({('x12", "x1'): 3.0, ('x1", 'x2'): 2.0, ('x2', 'x2"): 0.0}, ©0.0)
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Programming a Quantum Annealer

« PyQUBO is a python library, with a C ++ backend, written by DWAVE to use its quantum annealer.

e |nstallation:

pip install pyqubo
« PyQUBQ is a very handy utility for writing problems in QUBO or ISING form. Let's see how to use it

« Variables: Type Spin (+1/-1)

>>> from pyqubo import Spin

»>>> 81, 52 = Spin('s1'), Spin('s2’)

>»> H = 2¥%s1%s2 + 3%s1

>>> pprint(H.compile().to qubo()) # doctest: +SKIP

({('s1", "s1'): 2.0, ('s1', 's2'): 8.0, ('s2', 's2"): -4.90}, -1.8)
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Programming a Quantum Annealer

« Arrays of Binary type variables (same for Spin type variables)

>>> from pyqubo import Array

»>> X = Array.create('x', shape=(2, 3), vartype='BINARY")
>>> x[@, 1] + x[1, 2]

(Binary(x[@][1])+Binary(x[1][2]))

CINECA (Q)2SiTntc e



Programming a Quantum Annealer

Arrays of Binary type variables (same for Spin type variables)

23>
23>
>
>
222
22>
23>

P
Can ]

i i T T T T e T T

from pyqubo import Array

numbers = [4, 2, 7, 1]

s = Array.create(’'s’', shape=4, vartype="SPIN")
H = sum(n * s for s, n in zip(s, numbers))**2

model = H.compile()

qubo, offset = model.to qubo()
pprint(qubo) # doctest: +SKIP
"y 's[8]"):
‘s[1]"
‘s[2]"
's[3]"
's[1]"
"s[2]
's[3]"
‘s[2]"
's[3]"
's[3]7):

‘s[e]

wmownown
)

un

woow|mown

un
FrFe reeralarr-reelraree e
T i i < I =

_ — e e ] ] ]

L

= = = = = = = = =
] ] ] bl - Ll ] ] ] ]

-160.0,

: 64.0,
: 224.0,
: 32.0,

: -96.0,

)
)
)
)
)
'y
)
)
)
)

112.0,

: 16.0,
: -196.0,
: 56.0,

-52.0}
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Programming a Quantum Annealer

« (Construct a QUBO problem with PyQUBO

>>> from pyqubo import Binary

>>> a, b = Binary('a"'), Binary('b")

*>»> M = 5.0

>>> H = 2%a + b + M*(a+b-1)**2

>>> model = H.compile()

>>> qubo, offset = model.to qubo() # QUBO with M=5.@
*»>>> M= 6.0

>»> H = 2%a + b + M*(a+b-1)**2

>>> model = H.compile()

>>> qubo, offset = model.to qubo() # QUBO with M=6.6
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Programming a Quantum Annealer

« Construct a QUBO problem with PyQUBO (with Placeholders)

b
>22
>22
>22
22>
22>
22>
22>
23>
23>

b
b
222
22>
22>
222>

from pyqubo import Binary

a, b = Binary('a'), Binary('b")

M=5.0

H=2% + b + M*(a+b-1)**2

model = H.compile()

qubo, offset = model.to qubo() # QUBO with M=5.@
M= 6.0

H=2%a + b + M*(a+b-1)**2

model = H.compile()

qubo, offset = model.to qubo() # QUBO with M=6.6

from pyqubo import Placeholder

a, b = Binary('a"), Binary('b")

M = Placeholder('M")

H=2%a + b + M*(a+b-1)**2

model = H.compile()

qubo, offset = model.to qubo(feed dict={'M': 5.8})
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Programming a Quantum Annealer

« Solve a problem set via pyQUBO
« After setting the Hamiltonian of the problem, it must be compiled and transformed into a bgm object

>>> from pyqubo import Binary

>>> x1, x2 = Binary('x1'), Binary('x2")
»>> H = (X1 + x2 - 1)**2

>>> model = H.compile()

»>>> bgm = model.to bgm()
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Programming a Quantum Annealer

« Solve a problem set via pyQUBO
« After setting the Hamiltonian of the problem, it must be compiled and transformed into a bgm object

>>> from pyqubo import Binary

>>> x1, x2 = Binary('x1'), Binary('x2")
»>> H = (X1 + x2 - 1)**2

>>> model = H.compile()

»>>> bgm = model.to bgm()

>>> import neal

>>> sa = neal.SimulatedAnnealingSampler()

>>> sampleset = sa.sample(bgm, num reads=1@)

>»> decoded samples = model.decode sampleset(sampleset)

>>> best sample = min(decoded samples, key=lambda x: x.energy)
>>> pprint(best sample.sample)

{'x1': @, "x2': 1}
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Exercise 1: Game of Switches

 Trytoimplement the Game of Switches

@D __-@——@

—

o .

g E(s)=) hs,+

27158

]

Adding another weight, J, which
multiplies the product of the two
switch settings.

ClNECA @QUANTUM

COMPUTING LAB




Exercise 2: Antenna Placement

« Trytoimplement the Antenna Placement Problem

N
AURO = —Zidtiqi + a;'ﬁijqiqj

(=0 (<]
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Add a Constraint to a QUBO Problem

By definition, a QUBO problem admits no constraints

Quadratic
Unconstrained
Binary
Optimization

 Still, there is a way.
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Add a Constraint to a QUBO Problem

Let's see how to implement a linear constraint in a QUBO problem.
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Add a Constraint to a QUBO Problem

« Let's see how to implement a linear constraint in a QUBO problem.
« Everything relies around the concept of penalty function

CINECA (Q)2SiTntc e



Add a Constraint to a QUBO Problem

« Let's see how to implement a linear constraint in a QUBO problem.
« Everything relies around the concept of penalty function

 Apenalty function is in fact an additional quantity to the original minimization problem, which must be
optimized in order for the entire problem to be optimized
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Add a Constraint to a QUBO Problem

« Let's see how to implement a linear constraint in a QUBO problem.
« Everything relies around the concept of penalty function

 Apenalty function is in fact an additional quantity to the original minimization problem, which must be
optimized in order for the entire problem to be optimized

« Suppose we want to add the following constraint to our antenna optimization problem

« LetF be the exact number of antennas to be placed
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Add a Constraint to a QUBO Problem

« Let's see how to implement a linear constraint in a QUBO problem.
« Everything relies around the concept of penalty function

 Apenalty function is in fact an additional quantity to the original minimization problem, which must be
optimized in order for the entire problem to be optimized

« Suppose we want to add the following constraint to our antenna optimization problem
« Let F be the exact number of antennas to be placed

« Remembering the mathematical formulation of our problem, requested constraint can be seen as

Zq‘:F
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Add a Constraint to a QUBO Problem

e |Let's do some math

N
Zq-L:F'

=0
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Add a Constraint to a QUBO Problem

e |Let's do some math

N N 2
Zqi =F = min Zqi —F

(=0 (=0
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Add a Constraint to a QUBO Problem

e |Let's do some math

N N 2
Zqi =F = min Zqi —F

(=0 =0

\ 2
Zqi —F
=0
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Add a Constraint to a QUBO Problem

e |Let's do some math

N N 2
28q1==F' =  min Eiqi—-Ff

(=0 =0

v ’ N ’ v
Zq—F | =| Zq | +F —F 2y
(=0 (=0 (=0

CINECA ()2 hs ue



Add a Constraint to a QUBO Problem

e |Let's do some math

N N 2
28q1==F' =  min Eiqi—-Ff

(=0 =0

N ? N ’ N N ? N
q—F | = th "‘)(2 — 2F'2c]-L = Zqi — 2F2C]t =
= - - = -

(= (=0 (=0 (=0
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Add a Constraint to a QUBO Problem

e |Let's do some math

2
N
th =  min (Zch — F )

=0 =0

2 N 2 4 N 2 N
qu —F | = Zqi >< — 2F'Zc]L = Zqi — 2F'Zc]-L =
=0 =0 =( =0 (

= (=0

4
"zqt + 22%:]1 — 2F'2c]L

=0 L‘<I =0
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Add a Constraint to a QUBO Problem

e |Let's do some math

2
N
th =  min (Zch — F )

=0 =0

2 N 2 4 N 2 N
th —F = th +><2 — QFZqi = Zqi — 2F'Zq-L =
=0 | | =0 |

(=0 (=0 (=0

NV N NV
"th + 2thc]I — 2|:'2c1L th 2ZquI — 2|:'Zc]L
=0 (<] =0 (=0 (<] =0
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Add a Constraint to a QUBO Problem

e |Let's do some math

N N 2
Z‘% =F = min Zqi —F

N 2 4 ? N 2 N
(Zqi—F) :<th) fl~><2—2|:'2c]L (qu) —2F2qi:

(=0 (=0 (=0 (=0
N N
:qu + 22%% — 2F’qu qu 22%} — 2F’qu
=0 i =0 =0
N
:Z (7 —_ 2F) q; ch]t%
(=0 (<]
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Add a Constraint to a QUBO Problem

N N ‘
=0 =0
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Add a Constraint to a QUBO Problem

N N ?
th =F — min th — F
=0 i

(=0

Y
win | B | 2 (11— 2F) q + 2294,
(=0 i
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Add a Constraint to a QUBO Problem

N N 2
Zqi =F = th — F
(=0

(=0

min 25 (1 — 2F)qL 225q 9;

(=0 ( ]
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Exercise 2: Antenna Placement

« Implement constraint into the Antenna Placement Problem

min Zﬁ (? —_ 2F)C]i + 2.25:'1%
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Add a Constraint to a QUBO Problem

Now suppose we want to add another constraint.
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Add a Constraint to a QUBO Problem

« Now suppose we want to add another constraint.

« For some reason, we have received orders from above telling us that certain antennas must be
placed, regardless of any other conditions.
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Add a Constraint to a QUBO Problem

« Now suppose we want to add another constraint.

« For some reason, we have received orders from above telling us that certain antennas must be
placed, regardless of any other conditions.

« How can we implement this type of request?
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Add a Constraint to a QUBO Problem

« Now suppose we want to add another constraint.

« For some reason, we have received orders from above telling us that certain antennas must be
placed, regardless of any other conditions.

« How can we implement this type of request?

 First of all we consider a vector L, of length equal to the number of antennas available. We mark with
0 the free antennas and with 1 the antennas that must necessarily be activated.
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Add a Constraint to a QUBO Problem

« Now suppose we want to add another constraint.

« For some reason, we have received orders from above telling us that certain antennas must be
placed, regardless of any other conditions.

« How can we implement this type of request?

 First of all we consider a vector L, of length equal to the number of antennas available. We mark with
0 the free antennas and with 1 the antennas that must necessarily be activated.

« Consequently, penalty function can be seen as

i 2
ZL-L (C]i —_ 7)
(=1
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Add a Constraint to a QUBO Problem

v 2
ZLE (qi —_ 7)
(=1
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Add a Constraint to a QUBO Problem
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Add a Constraint to a QUBO Problem
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Add a Constraint to a QUBO Problem

v 5 v N N
2L (q—1) =2Lg + Bl — 22kig =
(=1 (=7 =1 (=7

N
R ZLﬂt

(=]
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Exercise 2: Antenna Placement

« Implement constraint into the Antenna Placement Problem
2 B, = 2
., - r' ™ s = - . -rr
A Tt ] PLI

v N
QUEO = — 2 g + aZBiqq; i ( (-Eoﬁ (1 = 27)q + Z2Pqq; ) )

Py
=0 i< 4

« Implement and configure L vector

N
—_— zthqL « Add values to QUBO problem
(=1

formulation
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Add a Constraint to a QUBO Problem

Now suppose we want to add an inequality constraint to our problem.
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Add a Constraint to a QUBO Problem

Now suppose we want to add an inequality constraint to our problem.
« Anexample could be
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Add a Constraint to a QUBO Problem

« Now suppose we want to add an inequality constraint to our problem.
« Anexample could be

« Let F be the maximum number of antennas that can be placed
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Add a Constraint to a QUBO Problem

« Now suppose we want to add an inequality constraint to our problem.
« Anexample could be

« Let F be the maximum number of antennas that can be placed

« Mathematically, the constraint appears in the form

N
Zqifi{F

L-—-
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Add a Constraint to a QUBO Problem

So far we have seen how to transform constraints involving equalities into penalty functions
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Add a Constraint to a QUBO Problem

« So far we have seen how to transform constraints involving equalities into penalty functions
« How to deal with an inequality?
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Add a Constraint to a QUBO Problem

« So far we have seen how to transform constraints involving equalities into penalty functions
« How to deal with an inequality?
« One way can be to reduceinequality to equality
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Add a Constraint to a QUBO Problem

« So far we have seen how to transform constraints involving equalities into penalty functions
« How to deal with an inequality?

« One way can be to reduceinequality to equality
« To do that, we need additional binary variables. For this interpretation, we need F more variables
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Add a Constraint to a QUBO Problem

« So far we have seen how to transform constraints involving equalities into penalty functions
« How to deal with an inequality?

« One way can be to reduceinequality to equality
« To do that, we need additional binary variables. For this interpretation, we need F more variables

N N F
Zqi sF = cht F— qu

(=1 =7 k=1

)
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Add a Constraint to a QUBO Problem

« So far we have seen how to transform constraints involving equalities into penalty functions
« How to deal with an inequality?

« One way can be to reduceinequality to equality
« To do that, we need additional binary variables. For this interpretation, we need F more variables

N N F
S<F = g = F— 3
(=1 (=1 k=T
N F

Zqi + chi = F

(=1 k=1

)
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Add a Constraint to a QUBO Problem

So far we have seen how to transform constraints involving equalities into penalty functions
How to deal with an inequality?

One way can be to reduce inequality to equality
To do that, we need additional binary variables. For this interpretation, we need F more variables

N N F
Zch < F — th F— qu
(=1 (=1 k=T
N F N+F
Zc]i'f‘Zqi:F m— Zqi:F

(=T

(=1 k=1

)
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Exercise 2: Antenna Placement

« Implement constraint into the Antenna Placement Problem

_ 2 = 2 .

N

v
QUBO = —Z'l‘dtlclL + aZBLIquI min ( <§0ﬁ(7 — F)g, +§2ﬁqiqj> ) —_

=0 i<

KLiqi
!

=

« Add F more qubits to the formulation

N+F « These qubits are a sort of ghost qubits:
. =F they MUST don't interact with the other
9i part of the problem formulation
(=1
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Add a Constraint to a QUBO Problem

Now suppose we want to add another inequality constraint to our problem
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Add a Constraint to a QUBO Problem

« Now suppose we want to add another inequality constraint to our problem
« For example:

Let A, be a measure of area. Turn on the antennas so that the minimum covered area is greater than
orequalto A,
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Add a Constraint to a QUBO Problem

« Now suppose we want to add another inequality constraint to our problem

« For example:

Let A, be a measure of area. Turn on the antennas so that the minimum covered area is greater than
orequalto A,

N
Z"A(icli = 'Aw\

(=1
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Add a Constraint to a QUBO Problem

« Now suppose we want to add another inequality constraint to our problem

« For example:

Let A,, be a measure of area. Turn on the antennas so that the minimum covered area is greater than
orequalto A,

N N N
2hq =4h, > 2hy A+ 27,

(=] (=1 k=1

)
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Add a Constraint to a QUBO Problem

Now suppose we want to add another inequality constraint to our problem
For example:

Let A,, be a measure of area. Turn on the antennas so that the minimum covered area is greater than
orequalto A,

N N N
2hq =h, > 2hy A+ 27,

(=7 =1 k=1

)

N N
Z’lﬂ?iqi — qu — 74(%

(=1 k=1
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Add a Constraint to a QUBO Problem

Now suppose we want to add another inequality constraint to our problem
For example:

Let A,, be a measure of area. Turn on the antennas so that the minimum covered area is greater than
orequalto A,

N N N
2hq =h, > 2hy A+ 27,

(=] (=1 k=1

)

1%}

Y N N
(=1 k=1 (=1
CINECA ()2 hs ue



Add a Constraint to a QUBO Problem

N
Z Ctﬂdt- 9; = 7‘th

{
(=]
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Add a Constraint to a QUBO Problem

N N 2
Zﬁg‘ﬂt-qi = 7‘13“ = thﬁ.qi — 7‘th

( (
=1 =1
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Add a Constraint to a QUBO Problem

( ( ( i
=1 =1 =1 =1

N N 2 N 2 N
thfd“ch = 7ﬂtm — ZCEfdt-q-[ —_ 7ﬂtm = Zﬁ-ft‘qi — 227‘1(““@7‘1({%

CINECA ()2 hs ue



Add a Constraint to a QUBO Problem

( ( ( (
=T (=1 =1 =1

Y N 2 N 2 N
ZCtﬂ’jt-qt = 7ﬂtm = Zﬁto‘jt-q-[ — ﬁtm = ZCiﬂﬂt-qi — QZ&MC-&C}E

N N
Z'I’jtfch + 226{6]%&7‘1‘1‘:}[ — 237‘1(““6-[7‘1({(]-[

=1 4]
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Add a Constraint to a QUBO Problem

( ( ( (
=1 =1 =1 =1

Y N 2 N N
ZCtﬂ’jt-qt = 7ﬂtm = Zﬁto‘jt-q-[ — ﬁtm = ZCiﬂﬂt-qi — QZ&MC-&C}E

o/ N 2N
Zﬂﬂtfch + 22&%7‘1?-[7‘1?1‘[% N 22&1%6'[7’1%% =2 (’ﬂ‘f o Q’ﬂ‘mci’ﬂ‘t) %" zxiéiqﬂ‘i&iqi

=1 4] =1 <]
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Exercise 2: Antenna Placement

« Implement constraint into the Antenna Placement Problem

— 2 B, = 2
. — r' ™ - - - . -rr
74\ T i1~ P ;
N v N N+F
AURO = — Z?A(-Lch + dZBithqj il < <§015(7— 2F)‘?t+§2ﬁ‘1ﬁj> ) _§KLiqi %qi =F
=0 i< . a
2N « Add N more qubits to the formulation

ZC‘L"A“LC]‘L - ’fdﬁm These qubits are a sort of ghost qubits:
=1 they don't interact with the other part of
the problem formulation

e Do the math!
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Add High Order terms to our problem

Sometimes it is necessary to add some terms of order 3 or higher to our problem.
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Add High Order terms to our problem

Sometimes it is necessary to add some terms of order 3 or higher to our problem.
How can we relate to a QUBO problem?
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Add High Order terms to our problem

Sometimes it is necessary to add some terms of order 3 or higher to our problem.
How can we relate to a QUBO problem?

XYz = mix {w(x'l‘y'l‘z —2)}
W
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Add High Order terms to our problem

« Sometimes it is necessary to add some terms of order 3 or higher to our problem.
« How can we relate to a QUBO problem?

XYz = max {w(x+y+z—2)}
W

X,V,% XyZ x+yv+z—2 maX, {W(x+y+z—2)}
0,0,0 0 —2 0], o
0,0,1 0 -1 0], o
0,1,0 0 —1 0], o
0,1,1 0 0 001
1,0,0 0 -1 0yp—o
1,0,1 0 0 0l o0,
1,1,0 0 0 0]y 04
1,1,1 1 1 1|, 4
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Exercise 2: Antenna Placement

« Implement constraint into the Antenna Placement Problem

_ 2 _ 2
i v W N+
QUBO = — 2tq + aZBijq.qu . ( <t§ﬁ(’_2r:)*+§2ﬁ”>> _ngiqi gqi "
=0 i3 =
gct*ﬂ‘ﬂt =,

=1

« Add High Order Terms to QUBO problem with pyqubo
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Graphs

« Mathematically speaking, an undirected graph is defined
asa set of vertices V' = {v,,.., v}
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Graphs

« Mathematically speaking, an undirected graph is defined
asa set of vertices V' = {v,,.., v}

« andasetofedges ECV xV
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Graphs

Mathematically speaking, an undirected graph is defined
asa set of vertices V' = {v,,.., v}

andasetof edges E CV xV

Each node and each edge can be weighted with an
arbitrary value (in this case we are talking about a
weighted graph)
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Graphs

Mathematically speaking, an undirected graph is defined
asa set of vertices V' = {v,,.., v}

andasetof edges E CV xV

Each node and each edge can be weighted with an
arbitrary value (in this case we are talking about a
weighted graph)

In this way it is possible to establish a one-to-one
correspondence between a weighted graph and a QUBO
function
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Graphs

Mathematically speaking, an undirected graph is defined
asa set of vertices V' = {v,,.., v}

andasetof edges E CV xV

Each node and each edge can be weighted with an
arbitrary value (in this case we are talking about a
weighted graph)

In this way it is possible to establish a one-to-one
correspondence between a weighted graph and a QUBO
function

H(e,b) = 5 + 7ab — 3b
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Graphs

Mathematically speaking, an undirected graph is defined
asa set of vertices V' = {v,,.., v}

andasetof edges E CV xV

Each node and each edge can be weighted with an
arbitrary value (in this case we are talking about a
weighted graph)

In this way it is possible to establish a one-to-one
correspondence between a weighted graph and a QUBO
function

H(e,b) = 5 + 7ab — 3b

a . b

5 -3
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Embedding a problem on a graph

"7 S __ « But what if the graph with which we want to represent the
k{ < QUBO function does not have enough vertices or edges to

NRE7 X2 X3 do so?
PN

=

7N
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Embedding a problem on a graph

"7 S __ « But what if the graph with which we want to represent the
W</ < QUBO function does not have enough vertices or edges to

A\’IL
N7 X237 XX do s0?

AN

 |n the case of the vertices, there is nothing to do: we have
to change the problem and / or graph!

1.
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Embedding a problem on a graph

"7 S __ « But what if the graph with which we want to represent the
W</ < QUBO function does not have enough vertices or edges to

A\’IL
N7 X237 XX do s0?

AN

 |n the case of the vertices, there is nothing to do: we have
to change the problem and / or graph!

 Inthe case of the edges, however, something is possible to
do

1.

-
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Embedding a problem on a graph

"7 _ — « But what if the graph with which we want to represent the
k{ A</ QUBO function does not have enough vertices or edges to
N7 R AN do so?

PN ' 20

 |n the case of the vertices, there is nothing to do: we have
to change the problem and / or graph!

 Inthe case of the edges, however, something is possible to
do

« The core of a quantum annealer is represented by a graph:
in the figure, we can observe the Chimera graph, that is the
topology of one of the D-Wave models (the penultimate
model)

1.

.

)
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Embedding a problem on a graph

N7

XA

5\ L/
> 4
XN

1.

.

)

But what if the graph with which we want to represent the
QUBO function does not have enough vertices or edges to
do so?

In the case of the vertices, there is nothing to do: we have
to change the problem and / or graph!

In the case of the edges, however, something is possible to
do

The core of a quantum annealer is represented by a graph:
in the figure, we can observe the Chimera graph, that is the
topology of one of the D-Wave models (the penultimate
model)

This means that to solve a QUBO problem it is necessary
to map your problem on the graph of the selected quantum
annealer
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Embedding a problem on a graph

N7

XA

But what if the graph with which we want to represent the
QUBO function does not have enough vertices or edges to
do so?

In the case of the vertices, there is nothing to do: we have
to change the problem and / or graph!

In the case of the edges, however, something is possible to
do

The core of a quantum annealer is represented by a graph:
in the figure, we can observe the Chimera graph, that is the
topology of one of the D-Wave models (the penultimate
model)

This means that to solve a QUBO problem it is necessary
to map your problem on the graph of the selected quantum
annealer

This procedure is called embedding
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Embedding a problem on a graph

Suppose we have a QUBO problem that can be translated with the following graph
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« Suppose we have a QUBO problem that can be translated with the following graph
« Suppose we also have a quantum annealer with a graph of this shape
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Embedding a problem on a graph

« Suppose we have a QUBO problem that can be translated with the following graph
« Suppose we also have a quantum annealer with a graph of this shape
« By looking at them, it seems impossible to map our problem to the target graph
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Embedding a problem on a graph

« Suppose we have a QUBO problem that can be translated with the following graph

« Suppose we also have a quantum annealer with a graph of this shape

« By looking at them, it seems impossible to map our problem to the target graph

« The embedding procedure allows for this mapping by forcing multiple qubits to behave as one

CINECA (Q)2SiTntc e



Embedding a problem on a graph

« Suppose we have a QUBO problem that can be translated with the following graph

« Suppose we also have a quantum annealer with a graph of this shape

« By looking at them, it seems impossible to map our problem to the target graph

« The embedding procedure allows for this mapping by forcing multiple qubits to behave as one

* Inacertain sense, we can say that the qubits engaged in embedding are placed in entanglement relationship: they
are forced to collapse in the same classical state

-1
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Embedding on Chimera and Pegasus
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Exercise 2: Antenna Placement

« Implement constraint into the Antenna Placement Problem

_ 2 _ 2
i v W N+
QUBO = — 2tq + aZBijq.qu . ( <t§ﬁ(’_2r:)*+§2ﬁ”>> _ngiqi gqi "
=0 i3 =
gct*ﬂ‘ﬂt =,

=1

 Try the embedding on Pegasus and Chimera
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Exercise 3: N-Queens Puzzle

Let us now turn to another problem: the N-queens

puzzle w

W
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Let us now turn to another problem: the N-queens

uzzle
° W

The N-queens puzzle is a generalization of the better
known 8-queens puzzle W
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Exercise 3: N-Queens Puzzle

Let us now turn to another problem: the N-queens
puzzle

The N-queens puzzle is a generalization of the better
known 8-queens puzzle

The 8-queens puzzle can be described in the following
way: let's consider a chessboard. Find a way to
arrange 8 queens on the chessboard so that none of
them arein check by any of the other queens

W
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Exercise 3: N-Queens Puzzle

Let us now turn to another problem: the N-queens
puzzle

The N-queens puzzle is a generalization of the better
known 8-queens puzzle

The 8-queens puzzle can be described in the following
way: let's consider a chessboard. Find a way to
arrange 8 queens on the chessboard so that none of
them arein check by any of the other queens

The game is generalized as follows: let's consider a
chessboard of dimensionNxN. Find a way to arrange
N queens on the chessboard so that none of them are
in check by any of the other queens

W
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Exercise 3: N-Queens Puzzle

Let's think about how to turn the problem into a QUBO

roblem
- W

W
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« Let's think about how to turn the problem into a QUBO

roblem
’ W

« We therefore consider a vector of binary variables. We
will take one for each square of the board we are W

considering. W

W

CINECA ()2 hs ue



Exercise 3: N-Queens Puzzle

« Let's think about how to turn the problem into a QUBO

roblem
’ W

« We therefore consider a vector of binary variables. We
will take one for each square of the board we are W
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 Each binary variable is therefore associated with a
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Exercise 3: N-Queens Puzzle

« Let's think about how to turn the problem into a QUBO

roblem
’ W

« We therefore consider a vector of binary variables. We
will take one for each square of the board we are W

considering. W
 Each binary variable is therefore associated with a
square on the chessboard W

« Each binary variable willbe 1 if its square contains a W
queen or 0 otherwise

W
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Exercise 3: N-Queens Puzzle

« Let's think about how to turn the problem into a QUBO

roblem
’ W

« We therefore consider a vector of binary variables. We
will take one for each square of the board we are W

considering. W
 Each binary variable is therefore associated with a
square on the chessboard W

« Each binary variable willbe 1 if its square contains a W
queen or 0 otherwise

« Putin these terms, the first requirement that my W
QUBO problem has to satisfy is: | want to have exactly w
N queens on the board

W
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Exercise 3: N-Queens Puzzle

« Let's think about how to turn the problem into a QUBO

roblem
’ W

« We therefore consider a vector of binary variables. We
will take one for each square of the board we are W

considering. W
 Each binary variable is therefore associated with a
square on the chessboard W

« Each binary variable willbe 1 if its square contains a W
queen or 0 otherwise

« Putin these terms, the first requirement that my W
QUBO problem has to satisfy is: | want to have exactly w
N queens on the board

W

N
cht =N
t=J
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Exercise 3: N-Queens Puzzle

« Let's think about how to turn the problem into a QUBO

roblem
’ W

« We therefore consider a vector of binary variables. We
will take one for each square of the board we are W

considering. W
 Each binary variable is therefore associated with a
square on the chessboard W

« Each binary variable willbe 1 if its square contains a W
queen or 0 otherwise

« Putin these terms, the first requirement that my W
QUBO problem has to satisfy is: | want to have exactly w

N queens on the board
2 W

N N
=1 |

(=7
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Exercise 3: N-Queens Puzzle

W
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Exercise 3: N-Queens Puzzle
v ’ v\’ v W
Zqi —N | = Zqi — 22% W
(= (=1 (=1 W
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Exercise 3: N-Queens Puzzle

w ‘ v\ W
th — N | = th — 2Zc]-L W
=/ (=] (=] W

Y Y W

= cht + QZC]tclj — 2Zqi W
(=1 = =1 W
W
W
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Exercise 3: N-Queens Puzzle

w ‘ v\ W
th —N | = th — 2Zqi W
(=T (=1 (=T W
Y Y W
= cht + QZqiqj — 2Zqi W
=1 <] (=1 W
v W
=2 (1 —2N) g T 22%% W
=1 4]
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Exercise 3: N-Queens Puzzle

Ok, what we have just found can be a good starting
point for the construction of the QUBO problem W

W
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Exercise 3: N-Queens Puzzle

« 0Ok, what we have just found can be a good starting
point for the construction of the QUBO problem W

« Now we have to put some constraints

W
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Exercise 3: N-Queens Puzzle

« 0Ok, what we have just found can be a good starting

point for the construction of the QUBO problem W
« Now we have to put some constraints
« Tryto think for a few minutes: what could be the W

necessary constraints? W

W
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point for the construction of the QUBO problem W
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« 0Ok, what we have just found can be a good starting

point for the construction of the QUBO problem W
« Now we have to put some constraints
« Tryto think for a few minutes: what could be the W

necessary constraints? W
« Exactly one queen for each row W

 Exactly one queen for each column

W

CINECA ()2 hs ue



Exercise 3: N-Queens Puzzle

« 0Ok, what we have just found can be a good starting

point for the construction of the QUBO problem W
« Now we have to put some constraints
« Tryto think for a few minutes: what could be the W

necessary constraints? W
« Exactly one queen for each row W

 Exactly one queen for each column
« At most one queen for each diagonal (both directions)

W

CINECA ()2 hs ue



Exercise 3: N-Queens Puzzle

« 0Ok, what we have just found can be a good starting

point for the construction of the QUBO problem W
« Now we have to put some constraints
« Tryto think for a few minutes: what could be the W

necessary constraints? W
« Exactly one queen for each row W

 Exactly one queen for each column
« At most one queen for each diagonal (both directions)

 |f we go through the previous slides, we can easily W
realize that every constraint can be implemented with w
what we already know

W
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Exercise 3: N-Queens Puzzle

« 0Ok, what we have just found can be a good starting

point for the construction of the QUBO problem W
« Now we have to put some constraints
« Tryto think for a few minutes: what could be the W

necessary constraints? W
« Exactly one queen for each row W

 Exactly one queen for each column
« At most one queen for each diagonal (both directions)

 |f we go through the previous slides, we can easily W
realize that every constraint can be implemented with w
what we already know

« The only problem is the large amount of math! W
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Exercise 3: N-Queens Puzzle

Let us then consider the problem from another point

of view.
W

W
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Exercise 3: N-Queens Puzzle

 Let us then consider the problem from another point

of view.
W

 Instead of mathematically calculating all the
constraints, let's do something else W

W
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Exercise 3: N-Queens Puzzle

 Let us then consider the problem from another point
of view.

 Instead of mathematically calculating all the
constraints, let's do something else

« Let us consider the matrix of the quadratic
contributions of the QUBO problem

W
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Exercise 3: N-Queens Puzzle

 Let us then consider the problem from another point

of view.
W

 Instead of mathematically calculating all the

constraints, let's do something else W
e Let us consider the matrix of the quadratic W
contributions of the QUBO problem
« This matrix has as elements all the possible pairs of W
squares on the chessboard (NxNxNxN) W

W
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Exercise 3: N-Queens Puzzle

 Let us then consider the problem from another point

of view.
W

 Instead of mathematically calculating all the
constraints, let's do something else W

e Let us consider the matrix of the quadratic W
contributions of the QUBO problem

« This matrix has as elements all the possible pairs of W
squares on the chessboard (NxNxNxN) W

« Toimplement our constraints, we do the following: we W
analyze the matrix of the quadratic contributions and,
for each pair that is "forbidden’, we increase the value w
of its weight

W
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Exercise 3: N-Queens Puzzle

 Let us then consider the problem from another point

of view.
W

 Instead of mathematically calculating all the
constraints, let's do something else W

e Let us consider the matrix of the quadratic W
contributions of the QUBO problem

« This matrix has as elements all the possible pairs of W
squares on the chessboard (NxNxNxN) W

« Toimplement our constraints, we do the following: we W
analyze the matrix of the quadratic contributions and,
for each pair that is "forbidden’, we increase the value w
of its weight

« The weight, by definition, is activated only if both W
qubits, or squares, are in state 1, i.e. both host a
queen
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Exercise 3: N-Queens Puzzle

« One way to do this, is to define a function in this way

def ROW(row,dim):
C=np.zeros((dim,dim), dtype=int) W
Clrow,:] = 1

return C.flatten() W

W
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Exercise 3: N-Queens Puzzle

« One way to do this, is to define a function in this way

def ROW(row,dim):
C=np.zeros((dim,dim), dtype=int)
Clrow,:] = 1
return C.flatten()

 This function calculates a linearized vector containing
all the possible pairs of squares on the board

W
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Exercise 3: N-Queens Puzzle

« One way to do this, is to define a function in this way

def ROW(row,dim):
C=np.zeros((dim,dim), dtype=int) W
Clrow,:] = 1
return C.flatten()

 This function calculates a linearized vector containing W

all the possible pairs of squares on the board W
« Once a specific row has been chosen, the vector will W

have the value 1 if the pair of squares belongs to the

same row, 0 otherwise w

W

CINECA ()2 hs ue



Exercise 3: N-Queens Puzzle

One way to do this, is to define a function in this way

def ROW(row,dim):
C=np.zeros((dim,dim), dtype=int)
Clrow,:] = 1
return C.flatten()

This function calculates a linearized vector containing
all the possible pairs of squares on the board

Once a specific row has been chosen, the vector will
have the value 1 if the pair of squares belongs to the
same row, 0 otherwise

With this definition, | can start building the penalty
matrix like this

B=np.zeros((MN*N,N*N), dtype=float)
for row in range(N):

print(B)

[[e.
[e.
[e.
[@.
[e.
[e.
[@.
[o.
[e.
[e.
[e.
[e.
[e.
[e.
[e.
[e.

=

[ow T e R e e T w7 7 2w N e Y 7 7w

R=ROW(row,N)
for i in range(N*N):

for j in range(i+l,N*N):

Q200000000000

o v R o 0 I v TR 0w w0 e v I v o R Y el e

DD D000 0 0 00000000

B[i][3]1=B[i][J]+RIi]*R[j]*w

SrEpprprpEEEPRPRepeER
e e i
LoEpprIERIEEROREE
SrEPEEFPPrEPEPEEEER
SEEEpEEEPrEEEREEEE
CEEprPEEEPpEEEREREER

o Qe I e R ow v I e Y ow v TR e v IR v I v S v I o o
200000000 2R ko086
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Exercise 3: N-Queens Puzzle

« One way to do this, is to define a function in this way

def ROW(row,dim):
C=np.zeros((dim,dim), dtype=int)
Clrow,:] = 1
return C.flatten()

 This function calculates a linearized vector containing
all the possible pairs of squares on the board

« Once a specific row has been chosen, the vector will
have the value 1 if the pair of squares belongs to the
same row, 0 otherwise

 With this definition, | can start building the penalty
matrix like this

 Basically I'm saying: if two squares are part of the
same row, it increases their weight by a factor w

B=np.zeros((MN*N,N*N), dtype=float)
for row in range(N):
R=ROW(row,N)
for i in range(N*N):
for j in range(i+l,N*N):
BIi1[J]=B[i1[F]+RI[1]1*R[J]*w
print(B)

[[e.
[e.
[e.
[@.
[e.
[e.
[@.
[o.
[e.
[e.
[e.
[e.
[e.
[e.
[e.
[e.

=

DD D000 0 0 00000000
faow T e R e Y e w7 T T v T i o 7 v 0w v
faon T e R a7 e T T e T e 7 T 7 2w e Y w7 Y 7 2w e w7
Dm0 50 SO =000 0 00500
ficw I v I e R ow R v T e B S e v v T o o v T o o
fuon T R e R e v T o O Y v R e Y e T Y v e T
OO0 0000000005085

[ow T e R e e T w7 7 2w N e Y 7 7w

OO0 60000000000k
o v R o 0 I v TR 0w w0 e v I v o R Y el e
o Qe I e R ow v I e Y ow v TR e v IR v I v S v I o o
e B B o v R v T v B o T o T e S v T v o
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Exercise 3: N-Queens Puzzle

One way to do this, is to define a function in this way

def ROW(row,dim):
C=np.zeros((dim,dim), dtype=int)
Clrow,:] = 1
return C.flatten()

R=ROW(©,4)

[[111 1]

[0 0 0 0]
[0 0 0 0] ]Ill{

[0 0 0 0]]

B=np.zeros{ (N*N,N*N), dtype=float)
for row in range(N):
R=ROW(row,N)
for i in range(N*N):
for j in range(i+l,N*N):
BIi1[J]=B[i1[F]+RI[1]1*R[J]*w
print(B)

[[e-
[e.
[e.
[@.
[e.
[e.
[@.
[o.
[e.
[e.
[e.
[e.
[e.
[e.
[e.
[e.

=

PrEpprrrprpEREREREE
e e i
LoEpprIERIEEROREE
SrEPEEFPPrEPEPEEEER
SEEEpEEEPrEEEREEEE
SEEPEERPEEERPEERRER

COLOEOLPOOLOOOR D
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SossoseseseSER LR
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COPCOOPLOORrORR®
SoesSSeSSrPPROSSS
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Exercise 3: N-Queens Puzzle

One way to do this, is to define a function in this way

def ROW(row,dim):
C=np.zeros((dim,dim), dtype=int)
Clrow,:] = 1
return C.flatten()

R=ROW(©,4)

[[111 1]

[0 0 0 0]
[0 0 0 0] ]Ill{

[0 0 0 0]]

[111100000000000 0]

B=np.zeros{ (N*N,N*N), dtype=float)
for row in range(N):
R=ROW(row,N)
for i in range(N*N):
for j in range(i+l,N*N):
BIi1[J]=B[i1[F]+RI[1]1*R[J]*w
print(B)

[[e-
[e.
[e.
[@.
[e.
[e.
[@.
[o.
[e.
[e.
[e.
[e.
[e.
[e.
[e.
[e.

=

PrEpprrrprpEREREREE
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Exercise 3: N-Queens Puzzle

« One way to do this, is to define a function in this way

def ROW(row,dim):
C=np.zeros((dim,dim), dtype=int)
Clrow,:] = 1
return C.flatten()

R=ROW(1,4)

[0 061111000060800 0]

N=4
W=1

B=np.zeros{ (N*N,N*N), dtype=float)
for row in range(N):
R=ROW(row,N)
for i in range(N*N):
for j in range(i+l,N*N):
BIi1[J]=B[i1[F]+RI[1]1*R[J]*w
print(B)

[[e-
[e.
[e.
[@.
[e.
[e.
[@.
[o.
[e.
[e.
[e.
[e.
[e.
[e.
[e.
[e.

=
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Exercise 3: N-Queens Puzzle

« Same thing for columns

for col in range(N):
C=COL (col,N)
for i in range(N*N):

N for j in range(i+1,N*N):
def COL(col,dim): TG rsn . .
C=np.zeros((dim,dim), dtype=int) BI1][31=Bl1][F]+C1]*CII]"w
C[:,col] = 1 .
return C.flatten() print(B)
[[6. 1. 1. 1. 1. 8. ©. 8. 1. 8. 9. 0. 1. 8. 8. 0.]
[@. @. 1. 1. @. 1. &. 6. . 1. 6. 6. 8. 1. a. a.]
[@. 8. 8. 1. 8. 6. 1. 6. 8. @. 1. 8. 8. 8. 1. 8.]
[@. 8. 8. 8. 8. 8. 6. 1. 8. 8. 6. 1. 8. 8. 8. 1.]
[@. . 8. 0. 0. 1. 1. 1. 1. @. @. @. 1. 2. @. 8.]
_ [@. 8. 8. @, 8. 6. 1. 1. 8. 1. 6. @. 8. 1. a. 8.]
C=COL(6,4) [0. 0. 8. 0. 0. 0. 8. 1. 8. 8. 1. 0. 8. 0. 1. 8.]
[@. @. 8. 8. @. 6. @. 6. 6. @. 6. 1. 8. a. . 1.]
[[1 686 0] [6. 0. 0. 0. 0. 0. 0.0.0.1.1. 1. 1. 8. 8. 0.]
[1 2 %) @] [@. 8. 8. B, 8. 8. 6. 6. 8. 8. 1. 1. 8. 1. 8. 8.]
[1 0 0 9] [@. . 8. 6. 9. ©. ©. @. ©. 9. @. 1. 8. 0. 1. 0.]
[@6. . 6. ©6. 9. ©. ©. @. ©. 9. @. @. 8. 0. 9. 1.]
[1 9 0 9]] [@. 8. 8. . 8. 6. 6. 6. 8. &. 6. 8. 8. 1. 1. 1.]
[@. @. 8. @. @. 6. @. 8. 0. @. 8. 0. 8. a. 1. 1.]
[@. @. 8. 6. @. 6. 6. 6. 0. @. 6. 0. 6. @. . 1.]
[16060610001000100 0] [6. 0. 0. 8. 0. 0.0.0.0.0.0.0.0.0.0.0.]]
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Exercise 3: N-Queens Puzzle

« Same thing for columns

C=COL(1,4)

[

| BN e B e B S |
OO0 O®
R =
OO O®
OO O®
e e e

[01 0001000100616 0] [@.

for col in range(N):
C=COL (col,N)
for i in range(N*N):

def COL(col,dim): for j %n ﬁangegi+4,N*N?: .
C=np.zeros((dim,dim), dtype=int) BI11[3]=B[1][3]+CI1]*C[I]"w
C[:,col] = 1

return C.flatten() print(B)
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[@.
[@.
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Exercise 3: N-Queens Puzzle

« Same thing for diagonals
for diagl in range(-(N-2),N-1):
D1=DIAG1(diagl,N)
for i in range(N*N):
def DIAGL(k,dim): for j in range(i+1,N*N):
d=np.ones(dim-abs(k), dtype=int) B[i][j]=B[i][3]+D21[1]*D1[j]*w
C=np.diag(d,k=k)
return C.flatten() print(B)

[[e.
[e.
[@.
[e.
[e.

D=DIAG1(©,4) Lo
2.

[[1 00 0] W EE
[0 106 8] [o.

[0 01 0] [©.

[0 006 1]] o
(0.
(0.

[1l06000100001000606 1] [@.
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e i
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Exercise 3: N-Queens Puzzle

« Same thing for diagonals
for diagl in range(-(N-2),N-1):
D1=DIAG1(diagl,N)
for i in range(N*N):
def DIAGL(k,dim): for j in range(i+1,N*N):
d=np.ones(dim-abs(k), dtype=int) B[i][j]=B[i][3]+D21[1]*D1[j]*w
C=np.diag(d,k=k)
return C.flatten() print(B)
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Exercise 3: N-Queens Puzzle

« Same thing for diagonals
for diagl in range(-(N-2),N-1):
D1=DIAG1(diagl,N)
for i in range(N*N):
def DIAGL(k,dim): for j in range(i+1,N*N):
d=np.ones(dim-abs(k), dtype=int) B[i][j]=B[i][3]+D21[1]*D1[j]*w
C=np.diag(d,k=k)
return C.flatten() print(B)

[ [e.
[e.
[@.
[e.
[e.
D=DIAG1(-1,4) %a-
g.
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Exercise 3: N-Queens Puzzle

« Same thing for diagonals

def DIAG2(k,dim):
d=np.ones(dim-abs(k), dtype=int)
C=np.fliplr(np.diag(d, k=k))

for diag?2 in range(-(N-2),N-1):
D2=DIAG2(diag2,N)
for i in range(N*N):
for j in range(i+l1,N*N):
B[i][J1=B[i][j]+D2[1]*D2[]j]*w

return C.flatten() ks
[[6. 1. 1. 1. 1. 1. 0. 0. 1. 8. 1. 0. 1. 8. 8. 1.]
[6.©. 1. 1. 1. 1. 1. 0. @. 1. 0. 1. 8. 1. 0. 8.]
[6.0.0.1.0. 1. 1. 1. 1. 9. 1. 8. 8. 0. 1. 8.]
[6. 0. 0. 0. 0. 0. 1. 1. 0. 1. 0. 1. 1. 0. 0. 1.]
[6. 0. 0.0.0. 1. 1. 1. 1. 1. 8. 0. 1. 0. 1. 8.]
D=DIAGZ(@ 4) [8. @. @. 8. @. @. 1. 1. 1. 1. 1. @. a. 1. &. 1.]
? [6. 0. 0.08. 0. 0.0. 1. 0. 1. 1. 1. 1. 0. 1. 8.]
[6.0.0.08.0.0.0.0.0.0.1.1.0.1.0. 1.]
[[6 @ © 1] [0. 0. 0.0.0.0.0.06.0.1. 1. 1. 1. 1. 8. 08.]
[0 06 1 0] [e. e. 0.0.0.0.0.0.0.0.1. 1. 1. 1. 1. 8.]
[6. 0. 0. 8. 6. 0. 0. 0. 0. 9. 0. 1. 8. 1. 1. 1.]
[0 16 6] [6. 0. 0.08.0. 0.0.0.0.0.0.0.0.0.1.1.]
[1 00 0]] [0. 0. 0.0. 0. 8. 0. 0. 0.0.06.0.0.1.1.1.]
[6. 0. 0. 8. 8. 0. 9. 0. 0. 9. 0. 0. 8. 0. 1. 1.]
[6. 0. 0. 8. 6. 0. 0. 0. 0. 9. 0. 0. 8. 0. 9. 1.]
00 01001006100100 0] [0. 0. 8. 08. 0. 0. 0. 0. 0. 0. 8. 8. 9. 0. 0. 9.]]
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Advanced Annealing Techiques

s SCAN

SuperComputing Applications and Innovation

Quantum Annealing with continuous variables:
Low-Rank Matrix Factorization

Daniele Ottaviani
CINECA

Quantum Computing and High Performance Computing
CINECA Casalecchio di Reno, Bologna, 18-12-2018
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Advanced Annealing Techiques

QUBO Problems with real variables

We define a QUBO problem with real variables as a Quadratic
Unconstrained Optimization problem with unknown variables
expressed as:

N—1
X=cC-) 2°g,, c=10"? forsome ae N
e=0
For example, the QUBO problem associated with
the simple equation x— b= 0 is:

N—1
min (Z (02223 . bczE—l—l) Qe + Z (0229+f+1) Qle)
e<f

q:(QO: vy qN—l) e:O

Considering x — b= 0 as min (x — b)”
xR
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Advanced Annealing Techiques

Graphical representation

QUBO problems of this kind are particularly difficult to solve.
Especially with annealing techniques.

This is due to the exponential dependence of the coefficients from the binary
variable indices, which create numerous local minima very similar to the global
minimum.

QUBO Value
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Advanced Annealing Techiques

Solving a linear system

We have chosen to solve a linear system Ax = b, where

X = (X1, X2, X3) and x; € [0,1].

9
We represent x;= ¢+ » "2°qe, ¢=10"° (N=10, a=3).

e=0

We will find x solving min _[|Ax — b|?
x€[0,1]3

1.301
0.440
0.672
0.218

0.024

0.125
0.342
0.709
0.427
0.036

0.187
0.082
0.802
0.520

0.038

|

0.178
0.333
0.489

}:

0.365]
0.232
0.748
0.435

0.035

CINECA @
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Advanced Annealing Techiques

Attempt number 1: Forward Annealing

100 attempts with 1,000 and 10,000 annealing cycles

).0035 , .
Forward Annealing
1000 cycles —=—
0.003} 10000 cycles —+—
0.179
).0025} | O 338
0.002+ 0-483
g — —
o
=
).0015 | _ -
0.178
0.001 | 0 333
).0005 | _0-489-
K io 20 30 40 50 60 70 80 90 10¢

Number of tests
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Advanced Annealing Techiques

Local refinement of solutions:

Reverse Annealing

Introduced with the last D-Wave model, DWAVE2000Q

Starting point Backward Forward
chosen by the user Annealing Annealing

During the Backward Annealing phase, the transverse field slowly increases up to
a value chosen by the user (Reversal Distance)

The last Forward Annealing phase is a LOCAL quantum annealing search:
how much local depends on the reversal distance value.

Image taken from Reverse Quantum Annealing for Local Refinement of Solutions, D-Wave White Papers, 2017

CINECA (Q)eSnints s



Advanced Annealing Techiques

Tuning the reversal distance
D:\WaUR

The Quantum Computing Company ™

Reverse Quantum Annealing for Local Refinement of Solutions

10 Same state @ 1.0 g

L¥] —

New ground state E b4 ) ,.E

08 Not ground state ‘U": = o 08 ..g

£ ¥ &

= 06 = 06 &

-g .E 3 40 . ‘r":

) E e b7

c 04 = 1) 04 o

oy <

-z f. 20 =

0.2 g = 02 =

S B ;c

0.0 = 0 00 @

0.60 0.65 070 0.75 0.80 0.85 0.90 060 065 070 075 080 085 090 2
Reversal distance Reversal distance
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Advanced Annealing Techiques

Forward Annealing| Attem pt number 2:

— Xo Forward Annealing + Reverse Annealing
Xstart = X0

¥

Starting point: Xstart

Reverse Annealing
— Xnew

4 4
Xstart = Xnew

Yes

No
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Advanced Annealing Techiques

Forward Annealing| Aftem pt number 2:

— X0 Forward Annealing + Reverse Annealing
Xstart = X0
¢ @ Not Solved Solved

Starting point: Xstart

Reverse Annealing
— Xnew

4 4
Xstart = Xnew

CINECA ()2 hs ue



Advanced Annealing Techiques

Pausing the annealing process

Being able to pause the annealing process is another of the new features introduced
with the latest D-WAVE quantum annealer.

We can use the pause during a Reverse Annealing search in this way:

/=Wl ) = ]

Starting point Backward Pause Forward
chosen by the user Annealing Annealing

Why pause? Because pausing the annealing process means better exploration of the
selected zone, increasing the chances of obtaining a new global minimum.

But pay attention: pause can't be too long. For two main reasons:
1) it increase the computational time of each annealing cycle.
2) if it is too long, it may also risk to increase the search radius more than desired.

CINECA (Q)25inc as



Advanced Annealing Techiques

Correlation between pause and search radius

We can realize a posteriori the search radius of a reverse annealing search by analyzing
the average distance between the solutions found by each cycle.

To do this, we choose the Hamming distance, a function written to calculate the
distance between vectors of binary numbers.

We have observed that there is a
correlation between the pause
time and the average distance
between the solutions obtained

with each annealing cycle

As with the reversal distance, here
too we have to be careful about
the right break time:

Hamming distance (Averages)

too little is not enough,
too much can lead to wrong O 10 20 3 40 5 6 70 8 90
results

Pausing time
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Advanced Annealing Techiques

Attempt number 3:

Forward Annealing +
Reverse Annealing with pause

Forward Annealing
— Xo Xstat = Xo
pause = 0

v

Starting point: Xstart
Reverse Annealing

with pause
— Xnew
4 | L3
pause = | Xstat = Xnew
pause + dt pause = 0

No ‘]

CINECA Q)
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Advanced Annealing Techiques

Attempt number 3:

Forward Annealing +
Reverse Annealing with pause

Forward Annealing
— Xo Xstat = Xo
pause = 0

v

Starting point: Xstart
Reverse Annealing

with pause
— Xnew
4 | L3
pause = | Xstat = Xnew
pause + dt pause = 0

No ‘]

CINECA Q)

QUANTUM
COMPUTING LAB



Advanced Annealing Techiques

Attempt number 3:

Forward Annealing +
Reverse Annealing with pause

@ Not Solved

Solved

Forward Annealing
— X0 Xstart = X0
pause = 0

v

Starting point: Xstart
Reverse Annealing

with pause
— Xnew
2 2
pause = Xstart = Xnew
pause + dt pause = 0

No

Bes
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