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seen in the previous lessons, called General 
Purpose Quantum Computers, is not to be 
freely programmed by the user.

• A Quantum Annealer is a quantum computer 
designed and built to host a single quantum 
algorithm, Quantum Annealing

• Quantum Annealing is a quantum algorithm 
capable of solving optimization problems
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The Quantum Annealing Algorithm

• The quantum annealing algorithm was proposed 
for the first time in 1998 with the paper you see in 
the figure.

• The author of the paper, as well as the theorist of 
the algorithm, is Professor Hidetoshi Nishimori

• Professor Nishimori, now happily retired, used to 
work as a full professor at the University of Tokyo

• His studies in this field have opened a real 
alternative path for quantum computing

• From the moment of publication of this paper to 
the first realization of a machine prototype 
capable of implementing this algorithm there is a 
gap of 14 years!

• The first Quantum Annealer model from D-Wave, 
in fact, came out in 2012

• In 2018 I had a beer with him!
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• Suppose we have an optimization problem, for 
example a minimization problem, whose 
objective function (i.e. the function to be 
minimized) is known and computable using a 
finite set of variables.

• The best way to solve a problem of this type is 
undoubtedly the so-called brute force approach: 
we calculate all the values of the objective 
function for all possible inputs and consider the 
smallest

• This approach, although undeniably functional, is 
unfortunately not always practicable. Sometimes 
the inputs with which to calculate the value of the 
objective function are not few ...

• Let's imagine for example the case of a function 
with N binary variables: the number of possible 
combinations is 2N…
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• Quantum Annealing is the quantum version of 
simulated annealing

• The principle of quantum mechanics that is most 
exploited during the run of a quantum annealing 
is the phenomenon of quantum tunneling

• Visually, we can consider the quantum annealing 
process as a simulated annealing process where 
the ball, a macroscopic object, is replaced by a 
microscopic particle.

• How does the Quantum Annealing process work? 
The core of the algorithm is in the Adiabatic 
Theorem:
A physical system remains in its instantaneous 
eigenstate if a given perturbation is acting on it 
slowly enough and if there is a gap between the 
eigenvalue and the rest of the Hamiltonian's 
spectrum
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• Currently, we can talk about The quantum 
annealer and not about a generic quantum 
annealer since today there is only one 
manufacturer for this type of device.

• The company in question is called D-Wave

• At the moment the latest quantum annealer 
model has more than 5000 qubits and about 
30,000 connectors

• We will see in the course of the lesson the 
importance of these numbers

• To understand how to interact with a quantum 
annealer, we need the following concepts:
• Objective functions

• Ising model (Ising Hamiltonian)

• Quadratic Unconstrained Binary Optimization problems 
(QUBO problems)

• Graphs and embedding
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• To express a problem in a form that allows its 
resolution through quantum annealing, we need 
first of all an objective function,

• An objective function is a mathematical 
expression of the energy of a system. Put simply, 
it represents the function whose minimum you 
want to find

• When the solver is a QPU, energy is a function of 
the binary variables that represent its qubits; for 
classical quantum hybrid solvers, energy might 
be a more abstract function.

• For most problems, the lower the energy of the 
objective function, the better the solution. 
Sometimes any state of local minimum for 
energy is an acceptable solution to the original 
problem; for other problems only optimal 
solutions are acceptable.
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Objective Function

• Expressing a problem through a minimizable 
objective function means thinking of every 
problem as a minimization problem

• Mathematically speaking, this is always a 
possible operation

• Although, in some cases it becomes very difficult.

• The objective functions accepted by the quantum 
annealer of D-Wave are of two types (equivalent 
to each other): Ising Hamiltonians and QUBO 
formulations
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• The Ising Model is a well-known model in statistical mechanics.

• Quadratic and binary model, an Ising Hamiltonian has as variables +1 and -1 (commonly called spin variables: 
spin up for the value +1, spin down for the value -1).

• The relationships between the spins, represented by the coupling values of the Hamiltonian, represent the 
correlations or anti-correlations.

• Mathematically, it is expressed in this form

• Where the coefficients h represent the bias values associated with the qubits and the coefficients J represent 
the strength of the coupling bonds
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• The switch game is a very simple game that 
can help you understand the nature of an 
optimization problem that can be solved by a 
quantum annealer.

• Suppose we have a certain number of 
switches, each settable on two possible states 
represented by the values 1 and -1

• Furthermore, each switch has a univocally 
associated weight

• The value of a switch is calculated by 
multiplying its weight by its state

• The game consists in finding the combination 
of states for the switches such that the sum of 
their values is as low as possible
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• Let us now consider another factor, namely 
the presence of couplers between the 
switches

• Couplers, just like switches, are endowed with 
a certain numerical weight

• The value of the couplers is given by their own 
weight multiplied by the state of the switches 
to which the coupler is associated

• In our case, the coupler will therefore have a 
state -1 if the two switches it connects are 
discordant, +1 otherwise

• We therefore add to the quantity to be 
minimized the contribution introduced by the 
couplers
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• QUBO (Quadratic Unconstrained Binary Optimization) problems are well known problems in the field of 
combinatorial optimization.

• A QUBO problem is defined by a matrix Q (upper triangular) and a vector of binary variables x.

• Its mathematical form is

• Where the diagonal terms of the matrix Q play the role of linear coefficients while the other non-zero elements 
are the quadratic coefficients. In matrix form
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• To familiarize yourself with the QUBO formulation, let’s 
make an example of a realistic problem whose 
structure can be mapped in this form

• Suppose we have a certain number of antennas and a 
certain number of possible sites to place these 
antennas.

• Each antenna with its signal can cover a certain area. 
When multiple signals overlap, however, unpleasant 
interference is generated

• Our task is to position the antennas in order to maximize 
the surface covered by the signal and at the same time 
minimize interference between the antennas.
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We define:

• The area covered by a single antenna such as the area of the circle whose radius is the parameter that 
describes the range of action of each individual antenna (problem data)

• The interference surface between two antennas as the area of the circle whose radius is given by the following 
formula

• where ri and rj are the parameters relating to the range of action of the antennas i and j and dist(ci, cj) is the 
distance between the points where the antennas are positioned
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QUBO/ISING Equivalency

• Any QUBO problem can be easily mapped into an ISING problem through simple equivalence

• More generally, any mathematical problem can be mapped into a QUBO problem

• You just have to understand if it's worth it :)
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Programming a Quantum Annealer

• PyQUBO is a python library, with a C ++ backend, written by DWAVE to use its quantum annealer.

• Installation:

• PyQUBO is a very handy utility for writing problems in QUBO or ISING form. Let's see how to use it

• Variables: Type Spin (+1/-1)
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Programming a Quantum Annealer

• Construct a QUBO problem with PyQUBO (with Placeholders)
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Programming a Quantum Annealer

• Solve a problem set via pyQUBO

• After setting the Hamiltonian of the problem, it must be compiled and transformed into a bqm object



Exercise 1: Game of Switches

• Try to implement the Game of Switches



Exercise 2: Antenna Placement

• Try to implement the Antenna Placement Problem



Add a Constraint to a QUBO Problem

• By definition, a QUBO problem admits no constraints

Quadratic
Unconstrained
Binary
Optimization

• Still, there is a way.
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Add a Constraint to a QUBO Problem
• Let's see how to implement a linear constraint in a QUBO problem.

• Everything relies around the concept of penalty function

• A penalty function is in fact an additional quantity to the original minimization problem, which must be 
optimized in order for the entire problem to be optimized

• Suppose we want to add the following constraint to our antenna optimization problem

• Let F be the exact number of antennas to be placed

• Remembering the mathematical formulation of our problem, requested constraint can be seen as
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• Now suppose we want to add another constraint.

• For some reason, we have received orders from above telling us that certain antennas must be 
placed, regardless of any other conditions.

• How can we implement this type of request?

• First of all we consider a vector L, of length equal to the number of antennas available. We mark with 
0 the free antennas and with 1 the antennas that must necessarily be activated.

• Consequently, penalty function can be seen as
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Exercise 2: Antenna Placement

• Implement constraint into the Antenna Placement Problem

• Implement and configure L vector

• Add values to QUBO problem 
formulation
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Add a Constraint to a QUBO Problem
• Now suppose we want to add an inequality constraint to our problem.

• An example could be

• Let F be the maximum number of antennas that can be placed

• Mathematically, the constraint appears in the form
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• So far we have seen how to transform constraints involving equalities into penalty functions

• How to deal with an inequality?

• One way can be to reduce inequality to equality

• To do that, we need additional binary variables. For this interpretation, we need F more variables



Exercise 2: Antenna Placement

• Implement constraint into the Antenna Placement Problem

• Add F more qubits to the formulation

• These qubits are a sort of ghost qubits: 
they MUST don’t interact with the other 
part of the problem formulation
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• For example:
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Add a Constraint to a QUBO Problem



Exercise 2: Antenna Placement

• Implement constraint into the Antenna Placement Problem

• Add N more qubits to the formulation

• These qubits are a sort of ghost qubits: 
they don’t interact with the other part of 
the problem formulation

• Do the math!
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• Sometimes it is necessary to add some terms of order 3 or higher to our problem.

• How can we relate to a QUBO problem?

Add High Order terms to our problem



Exercise 2: Antenna Placement

• Implement constraint into the Antenna Placement Problem

• Add High Order Terms to QUBO problem with pyqubo
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• But what if the graph with which we want to represent the 
QUBO function does not have enough vertices or edges to 
do so?

• In the case of the vertices, there is nothing to do: we have 
to change the problem and / or graph!

• In the case of the edges, however, something is possible to 
do

• The core of a quantum annealer is represented by a graph:
in the figure, we can observe the Chimera graph, that is the 
topology of one of the D-Wave models (the penultimate 
model)

• This means that to solve a QUBO problem it is necessary 
to map your problem on the graph of the selected quantum 
annealer

• This procedure is called embedding
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Embedding a problem on a graph

• Suppose we have a QUBO problem that can be translated with the following graph

• Suppose we also have a quantum annealer with a graph of this shape

• By looking at them, it seems impossible to map our problem to the target graph

• The embedding procedure allows for this mapping by forcing multiple qubits to behave as one

• In a certain sense, we can say that the qubits engaged in embedding are placed in entanglement relationship: they 
are forced to collapse in the same classical state



Embedding on Chimera and Pegasus



Exercise 2: Antenna Placement

• Implement constraint into the Antenna Placement Problem

• Try the embedding on Pegasus and Chimera
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• Let us now turn to another problem: the N-queens 
puzzle

• The N-queens puzzle is a generalization of the better 
known 8-queens puzzle

• The 8-queens puzzle can be described in the following 
way: let’s consider a chessboard. Find a way to 
arrange 8 queens on the chessboard so that none of 
them are in check by any of the other queens

• The game is generalized as follows: let’s consider a  
chessboard of dimension NxN. Find a way to arrange 
N queens on the chessboard so that none of them are 
in check by any of the other queens
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Exercise 3: N-Queens Puzzle
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• Ok, what we have just found can be a good starting 
point for the construction of the QUBO problem

• Now we have to put some constraints

• Try to think for a few minutes: what could be the 
necessary constraints?

• Exactly one queen for each row

• Exactly one queen for each column

• At most one queen for each diagonal (both directions)

• If we go through the previous slides, we can easily 
realize that every constraint can be implemented with 
what we already know

• The only problem is the large amount of math!
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• Let us then consider the problem from another point 
of view.

• Instead of mathematically calculating all the 
constraints, let's do something else

• Let us consider the matrix of the quadratic 
contributions of the QUBO problem

• This matrix has as elements all the possible pairs of 
squares on the chessboard (NxNxNxN)

• To implement our constraints, we do the following: we 
analyze the matrix of the quadratic contributions and, 
for each pair that is "forbidden", we increase the value 
of its weight

• The weight, by definition, is activated only if both 
qubits, or squares, are in state 1, i.e. both host a 
queen
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• One way to do this, is to define a function in this way

• This function calculates a linearized vector containing 
all the possible pairs of squares on the board

• Once a specific row has been chosen, the vector will 
have the value 1 if the pair of squares belongs to the 
same row, 0 otherwise

• With this definition, I can start building the penalty 
matrix like this

• Basically I'm saying: if two squares are part of the 
same row, it increases their weight by a factor w
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