Quantum Machine Learning on a Quantum Annealer

Restricted Boltzmann Machines and

Recommendation Systems

Lorenzo Rocutto – PhD @ University of Bologna

A new problem for AQCs

1. Optimization problem

2. Artificial Intelligence: Generative model

A new problem for AQCs

1. Optimization problem

Quantum processor should return only the correct answer

2. Artificial Intelligence: Generative model

Quantum processor should return a probabilistic answer

Ideal adiabatic quantum computer

Hypothesis:

- 1. Complete superposition
- 2. Slow annealing
- 3. Absence of environment coupling
- 4. H_P is implemented exactly
- 5. No readout errors

Ideal adiabatic quantum computer

Hypothesis:

- 1. Complete superposition
- 2. Slow annealing
- 3. Absence of environment coupling
- 4. H_P is implemented exactly
- 5. No readout errors

Which is the least satisfied hypothesis?

Ideal adiabatic quantum computer

Hypothesis:

- 1. Complete superposition
- 2. Slow annealing
- 3. Absence of environment coupling
- 4. H_P is implemented exactly
- 5. No readout errors

h is the least hypothesis?

Exploiting the limits of AQCs

- Quantum annealing tries to tunnell through energy barriers....
- ... But also thermal fluctuations can help the process

Single-qubit energy barrier

Exploiting the limits of AQCs

- Quantum annealing tries to tunnell through energy barriers....
- ... But also thermal fluctuations can help the process

Exploiting the limits of AQCs

The process freezes

When the thermal fluctuations dominate the process (high T):

 $P(spin flip) \sim e^{-\delta U/k_BT}$

When $\delta U \gg k_B T$ thermal fluctuations stop.

Quantum tunnelling probability depends on the energy barriers. Not on *T*.

Distribution produced by AQCs

D-Wave quantum annealers can be used as a generator of samples that follows the *Boltzmann distribution* of the classical cost function encoded in H_P .

Distribution produced by AQCs

D-Wave quantum annealers can be used as a generator of samples that follows the *Boltzmann distribution* of the classical cost function encoded in H_P .

 $J = 7.9 GHz \rightarrow J = 1.0$ $T = 0.38 K \rightarrow T_{eff} = 1.0$ $T = 12.5 mK \rightarrow T_{eff} = 0.033$

Distribution produced by AQCs

D-Wave quantum annealers can be used as a generator of samples that follows the *Boltzmann distribution* of the classical cost function encoded in H_P .

 $J = 7.9 GHz \rightarrow J = 1.0$ $T = 0.38 K \rightarrow T_{eff} = 1.0$ $T = 12.5 mK \rightarrow T_{eff} = 0.033$

Operating temperature of a D-Wave QPU

Hypothesis: $|\phi(\tau > \tau_{\text{freeze}})\rangle \approx \frac{1}{Z^{1/2}} \sum_{j=1}^{2^{N}} e^{i\theta_j} e^{-\frac{L_j}{2T_{\text{eff}}}} |S_j\rangle$ 0.6 T = 0.250.5 T= 0.5 T=10.4 <u>ш</u> 0.3 0.2 0.10.0 -8-6-2E

Boltzmann Machine

A native neural network for quantum annealers

Lorenzo Rocutto

Applying a ML model

- We hypothesize the existence of a conditioned probability distribution in the data
- The Boltzmann Machine tries to mimic that distribution to reconstruct missing data

A well known generative model

RBMs can solve many problems

the computational cost is high...

Classical RBM

A 2 layer Neural Network. Units assume values in **{0; 1}**

Energy model

Energy model

Energy model

Sampling from the RBM

Gibbs Sampling

Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for boltzmann machines, Cognitive science 9, 147–169 (1985)

$$\frac{1}{N_{\mathcal{D}}} \sum_{\mathbf{r}\in\mathcal{D}} \frac{\partial \log p(\mathbf{r})}{\partial w_{ij}} = \frac{1}{N_{\mathcal{D}}} \sum_{\mathbf{r}\in\mathcal{D}} \left(\frac{\sum_{\{\mathbf{h}\}} r_i h_j e^{-E(\{\mathbf{h}\},\mathbf{r})}}{\sum_{\{\mathbf{h}\}} e^{-E(\{\mathbf{h}\},\mathbf{r})}} \right) - \frac{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} v_i h_j e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}} \equiv \frac{1}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}} = \frac{1}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}$$

$$\frac{1}{N_{\mathcal{D}}} \sum_{\mathbf{r} \in \mathcal{D}} \frac{\partial \log p(\mathbf{r})}{\partial w_{ij}} = \frac{1}{N_{\mathcal{D}}} \sum_{\mathbf{r} \in \mathcal{D}} \left(\frac{\sum_{\{\mathbf{h}\}} r_i h_j e^{-E(\{\mathbf{h}\},\mathbf{r})}}{\sum_{\{\mathbf{h}\}} e^{-E(\{\mathbf{h}\},\mathbf{r})}} \right) - \frac{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} v_i h_j e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}} \equiv \mathbb{E} \left(\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})} - \frac{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} v_i h_j e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}} \right) = \frac{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} v_i h_j e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}} = \frac{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} v_i h_j e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}} = \frac{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} v_i h_j e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}} = \frac{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} v_i h_j e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}{\sum_{\{\mathbf{v}\},\{\mathbf{h}\}} e^{-E(\{\mathbf{v}\},\{\mathbf{h}\})}}}$$

Problems: Does not follow the gradient of any function; Works bad for non bipartite graphs

I. Sutskever and T. Tieleman, **On the convergence properties of contrastive divergence**, in Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010, pp. 789–795.

Gibbs Sampling

Looking for a better sampling method

On the Challenges of Physical Implementations of RBMs V. Domoulin et al. – 2014

Proposal of AQCs as physical implementations of RBMs

How does an AQC work?

DWave 2000Q[™] System chip

AQC and RBM

AQC and RBM

The quantum breakthrough

The quantum breakthrough

Each sample is produced in a single annealing cycle

Development of Quantum RBMs on AQCs

 On the Challenges of Physical Implementations of RBMs – V. Domouli, I. J. Goodfellow, A. Courville, and Y. Bengio– 2014 Proposal of AQCs as physical implementations of RBMs

- Application of Quantum Annealing to Training of Deep Neural Networks - H. Adachi, P. Henderson – 2015
- D-Wave devices produce correctly distributed samples/ LOCKHEED MARTIN

- Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning – M. Benedetti,...,Perdomo-Ortiz– 2016
- Temperature estimation advances RBMs implementation on AQCs

Limitations of the hardware

- Low impact:
 - Parameters noise
 - Constraints on the parameters

Limitations of the hardware

V. Dumoulin, I. J. Goodfellow, A. Courville, and Y. Bengio, **On the challenges of physical implementations of rbms**, in Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014

The actual implementation

One of the main hardware limits

Many problems can not be implemented on the hardware graph

The problem can be overcome using *embbedding* techniques

Embedding techniques

Embedding a complete RBM

Rocutto, Lorenzo, Claudio Destri, and Enrico Prati. **Quantum Semantic Learning by Reverse Annealing of an Adiabatic Quantum Computer**. Advanced Quantum Technologies

Embedding a complete RBM

Rocutto, Lorenzo, Claudio Destri, and Enrico Prati. **Quantum Semantic Learning by Reverse Annealing of an Adiabatic Quantum Computer**. Advanced Quantum Technologies

Highly connected RBM

Visualizing Boltzmann Distribution

Orange:

Theoretical Boltzmann distribution of the RBM functional at T=1

Blue:

actual distribution extracted from the DWave annealer

An unfair Benchmark

Matrix factorization

Focus on its application in Machine Learning

Lorenzo Rocutto

Dimensionality reduction

Learning is easier the smaller are the data in the dataset We want to compress the data losing the least information possible

Application as a recommendation system

Extracted from Andrea Skolik contribution to Qubits 2019, to be found at https://www.dwavesys.com/qubits-europe-2019

- data of 47819 car purchases
- data includes color packages, accessories, ...
- one-hot encoded categorical features
- turned them into "user ratings"
- 0: no purchase, 1: purchase

	model_5F11E2	model_5F11MX	interior_color_BC	SEAT FULL
0	1	1	0	0
1	0	1	1	1
2	0	0	0	1
3	0	0	0	1
4	0	0	1	0
5	1	0	1	1
6	0	0	0	0
7	1	0	0	0
8	0	1	1	1
9	0	0	1	1
10	1	0	1	1
11	0	0	0	0
12	1	1	0	0
13	1	0	1	1
14	1	0	0	0
15	1	0	0	1
16	0	0	1	0
17	0	0	1	1
18	0	1	1	0
19	1	0	1	1

Non finita

V

How to actually use a quantum annealer

COMMAND LINE INSTALL

Step 1: D-Wave Python Library

We recommend that you work in a virtual environment. If you are new to Python virtual environments, see our <u>Getting Started</u> guidelines. To set up the required dependencies, run the following command from your terminal:

pip install dwave-ocean-sdk && dwave
config create

COPY

Step 2: Your API token

Follow the prompts and paste the following into your terminal.

СОРҮ

Step 3: Solve Problems

You should now be able to connect to a D-Wave system. Verify with the **dwave ping** command. Solve your own problems or begin with our <u>end-to-end</u> examples.

Leap plaftorm

Go to: https://cloud.dwavesys.com/leap/login/

Please note:

CINECA is currently distributing computational time to be used on the D-Wave Leap platform!

Install ocean sdk

Install ocean sdk

Coding

Go to: <u>https://cloud.dwavesys.com/leap/resources#additional-</u> resources

Then click on «jupyter notebooks»

Notebooks	LIFFICULTY LEVEL	▼ TAG TYPE			
Exploring the Pegasus Topology 🙁 NEW 🚉 INTERMEDIATE					
Factoring # BEGINNER					
Structural Imbalance in Signed Social N					
Feature Selection # INTERMEDIATE					

I will show you a simple example that you can later run with your token

