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MACHINE LEARNING
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MACHINE LEARNING

Supervised Unsupervised Reinforced

• Classification
• Regression

• Clustering
• Data Generation

• Game theory
• Robotics

Branches of machine learning



APPLICATIONS

• Identification of faces in images

• Identification of pedestrian

• Classification of texts

• Bioinformatics research

• Classification of remotely sensed
images

SUPERVISED LEARNING



SUPERVISED LEARNING

Classification Problem

Classification Rule
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SUPERVISED LEARNING

Classification Problem

Classification Rule

Support Vector Machine Rule

Learning parameters

Model

Non linear 
feature map



Classical Support Vector Machine (SVM)



SUPPORT VECTOR MACHINE

Margin width

Such that

Support vector

Overview
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SUPPORT VECTOR MACHINE

Optimization



SUPPORT VECTOR MACHINE

Lagrange multipliers

Optimization



SUPPORT VECTOR MACHINE

Optimization



SUPPORT VECTOR MACHINE

Input space

Feature space

Non-linear case
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Input space

Feature space
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SUPPORT VECTOR MACHINE

Non-linear case



SUPPORT VECTOR MACHINE

Kernel matrix

Non-linear case



Neural Networks



PERCEPTRON



NEURAL NETWORKS

From Perceptron to Hornik theorem

Hornik theorem

• 1 output
• 1 hidden layer
• N hidden neurons

F(x)

WW'



NEURAL NETWORKS

Before Training: Random parameters

Deep supervised learning



NEURAL NETWORKS
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NEURAL NETWORKS

Deep supervised learning

Before Training: Random parameters
LOSS function

The distance between the neural 
network predictions and the labels 
of the training set

• MSE

• Cross-Entropy



NEURAL NETWORKS

Deep supervised learning

Before Training: Random parameters
LOSS funciton

The distance between the neural 
network preditions and the labels 
of the training set

• MSE

• Cross-Entropy Neural network prediction

Truth label



NEURAL NETWORKS

Deep supervised learning

Before Training: Random parameters

Loss function optimization

Gradient descent



NEURAL NETWORKS

Deep supervised learning

Before Training: Random parameters

Loss function optimization

Gradient descent

Backpropagatiorn:
Compute the gradient by 
chain rule

Learning rate



NEURAL NETWORKS

Deep supervised learning

After Training: Optimal parameters

Loss function optimization

Gradient descent

Backpropagatiorn:
Compute the gradient by 
chain rule

Learning rate

https://playground.tensorflow.org/

https://playground.tensorflow.org/
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Quantum Machine Learning on NISQ devices



QUANTUM MACHINE LEARNING

Machine learning

Quantum computing

Gate-model

Quantum machine 
learning on gate-
model quantum 

computer



APPLICATIONS

• Drug discovery

• Finance

• Space

• Cybersecurety



QUANTUM MACHINE LEARNING

Linear algebra Sampling Optimization

Operations on gate-model 
quantum computers follow 
the linear algebra rules

Quantum mechanics is 
intrinsically probabilistic

Explore more paths with 
quantum phenomena

Possible advatage



QUANTUM MACHINE LEARNING

• First generation of QML
o Accelerated linear algebra on quantum computers
o Only applies to fault-tolerant quantum computers

Overview
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QUANTUM MACHINE LEARNING

QISKIT PENNYLANE TF QUANTUM

+

For hybrid quantum-
classical computation

Equivalence between 
quantum and tensor 

operations

For hybrid quantum-
classical computation

Integration of pytorch and 
tensorflow with different 

quantum SDK

Most used quantum SDK 
with access of quantum 

devices

Machine learning modules

=

Frameworks



QUANTUM MACHINE LEARNING

NISQ application

Supervised learning:

Quantum Support Vector Machine (QSVM) 
for regression and classification

Unsupervised learning:

Quantum Generative Adversal Network (QGAN) 
hybrid quantum-classical generative model

Reinforcement learning:

Reinforcement learning with QVC 
hybrid reinforcement learning algorithm



• Feature map: Store the 
inputs in a quantum state

• Variational circuit: Learnable 
parameter circuit

• Expectation value: 
Measurements introducing 
non-linearity

QUANTUM MACHINE LEARNING

Ideal blocks



QUANTUM MACHINE LEARNING

No QRAM to store data

Encoding data generally hard

Better if are intrinsically 
quantum such as quantum 

states of a system

Encoding problems



Quantum Support Vector Machine (QSVM)



QUANTUM SUPPORT VECTOR MACHINE

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/version/2

Breast cancer Wisconsin

Use case

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/version/2


QUANTUM SUPPORT VECTOR MACHINE

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/version/2

Breast cancer Wisconsin

Dataset with 2 feature

2 qubits to performe QSVM

Use case

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data/version/2


QUANTUM SUPPORT VECTOR MACHINE

Quantum advantage:

More complex feature map at 
low computational cost

Intuition



QUANTUM SUPPORT VECTOR MACHINE

Non-linear feature map

Intuition



QUANTUM SUPPORT VECTOR MACHINE

• First order expansion (1 or more qubits, no entanglement)

• Second order expansion (2 or more qubits, entanglement)

Feature map



• Variational quantum circuit

Using variational quantum eigensolver
(VQE)

• Kernel matrix estimation

QUANTUM SUPPORT VECTOR MACHINE



QUANTUM SUPPORT VECTOR MACHINE

Kernel estimation



QUANTUM SUPPORT VECTOR MACHINE

If

Cost function

Learnable parameters

Quantum variational circuit



QUANTUM SUPPORT VECTOR MACHINE

Varitional circuit ansatz



• Expectation value of an operator f

• Classification rule

QUANTUM SUPPORT VECTOR MACHINE

Quantum variational circuit



Quantum Neural Networks (QNN)



VARIATIONAL QUANTUM ALGORITHM

General idea



QUANTUM NEURAL NETWORK

• Sequence of continuously-
parametrized rotations executed 
on QPU

• Measure observable expectation 
value (non-linearity)

• CPU optimization suggests new 
parameters to minimize the 
expectation value

Definition

https://qml.entropicalabs.io/

https://qml.entropicalabs.io/


• Data must be prepared on the fly

• QPU needs full quantum program for each run 
(microseconds for each run)

• Relative high latency CPU-QPU (ms)

QUANTUM NEURAL NETWORK

Problems



QUANTUM NEURAL NETWORK

Classical optimization is used

Hybrid approach



QUANTUM NEURAL NETWORK

Classical optimization is used But the gradient is computed by QPU

Parameter shift

Hybrid approach



QUANTUM NEURAL NETWORK

Classical optimization is used But the gradient is computed by QPU

Parameter shift

Exact

Hybrid approach



QUANTUM NEURAL NETWORK

State

Expectation value

Operator (Observable)

Parameter shift



QUANTUM NEURAL NETWORK
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QUANTUM NEURAL NETWORK
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QUANTUM NEURAL NETWORK

State

Expectation value

Operator (Observable)

Pauli rotation

Commutator

Parameter shift



QUANTUM NEURAL NETWORK

State

Expectation value

Operator (Observable)

Parameter shift



QUANTUM NEURAL NETWORK

Choose a compromise between
• Computational cost (depth)
• Expressiveness of the unitary operator

Variational cirucit ansatz



Choose a compromise between
• Computational cost (depth)
• Expressiveness of the unitary operator

TARGET

Variational cirucit ansatz

QUANTUM NEURAL NETWORK



QUANTUM NEURAL NETWORK



QUANTUM NEURAL NETWORK

https://arxiv.org/pdf/1905.10876



HYBRID QUANTUM-CLASSICAL COMPUTING



TENSORFLOW QUANTUM

• Circuits written with Cirq and converted into tensors
• Expectation value of an operator (OPs)

• Backpropagation for parameter optimization



TENSORFLOW QUANTUM



EXAMPLES

QNN example 1

Quantum 
data input

Quantum 
model

<Z>Ry(α)

Expectation

Classifier

P1

P2



EXAMPLES

QNN example 1

Quantum 
data input

Quantum 
model

<Z>

Quantum 
data input

Quantum 
model

<Z>Ry(α)

Expectation

Classifier

P1

P2

QNN example 2: mnist classification



BARREN PLATEAUS

Pauli Rotation



BARREN PLATEAUS

Pauli Rotation

Periodic function Saddle points



BARREN PLATEAUS

• In classical optimization, it is suggested that 
saddle points, not local minima, provide a 
fundamental impediment to rapid high-
dimensional non-convex optimization. (Dauphin et 
al., 2014)

• For a wide class of reasonable parameterized 
quantum circuits, the probability that the gradient 
along any reasonable direction is non-zero to 
some fixed precision is exponentially small as a 
function of the number of qubits. (McClean et al., 
2018)

Pauli Rotation

Periodic function Saddle points



FUTURE PERSPECTIVES

• QRAM for data encoding
• Fault tolerant QC for better 

variational circuit ansatz
• More qubits

Third generation of QML
o No barren plateaus
o No heuristic model


