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Classical bit �b ∈ {0,1}

quantum qubit � |ψ⟩ ∈ ℋ, dim(ℋ) = 2

|ψ⟩ = cos θ |0⟩ + eiϕ sin θ |1⟩
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Introduction



Problem: dim (ℋ)

dim(ℋ) = 26 = 64
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dim(ℋ) = 2n

In general, we have:

GB ( |ψ⟩) =
2 ⋅ 64

8
dim(ℋ) ⋅ 10−9

Complex

numbers

Double

precision

bit �  byte→ byte � Gigabytes →

�  TB10 000
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Problem: dim (ℋ)
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Classical simulations
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Tensors

α �  order-0 tensor �  scalar= =

⃗v �  order-1 tensor �  vector= =

U �  order-2 tensor �  matrix= =

T �  order-3 tensor �  tensor= =

T

Tensor leg
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Tensor Manipulation

Tδην
αβγ

We can manipulate Tensors and reshape their indexes (legs) as we prefer:

vα =

v0
v1
v2
v3

Reshape
vαβ = (v0 v1

v2 v3)

This means that a tensor of any order can be mapped to a matrix. So, we 

can use linear algebra to work with tensors.

Reshape Tαβ
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Tensor operations
We can perform operations on tensors, and we have to decide a notation

for them, in particular using the graphical notation introduced previously.

We start by introducing the complex conjugate of a order-1 tensor:

⃗v *
= ⃗v
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Tensor operations
We can perform operations on tensors, and we have to decide a notation

for them, in particular using the graphical notation introduced previously.

Then we introduce the contraction between two tensor along their legs. 
• We start from two order-1 tensor, and it is equivalent to the scalar 

product between two vectors: 
 
 
 
 
 

• Then, the contraction between two order-2 tensor is simply the matrix-
matrix multiplication:

⟨ψ |ϕ⟩ = ∑
i

ψ*i ϕi =

|ϕ⟩

⟨ψ |
= ⟨ψ |ϕ⟩

(AB)ik = ∑
j

aijbjk =
A

B

= AB
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TO: Contraction
We can perform operations on tensors, and we have to decide a notation

for them, in particular using the graphical notation introduced previously.

• In general, we can contract any leg of an order- �  tensor: 
 
 
 
 
 

• What will be done in practice by the simulator, however, will be a little 
different:

n

T2T1
= T3T3 = ∑

αβγ

T1,αβγδηT2,αβγμν =

ReshapeT2T1 T2T1 Matrix mult 
Reshape

T3



• Finally, we present a way to separate tensors. This means that we can 
pass from a single tensor to two tensors. First, we reshape it such that 
we have a matrix, dividing separating in different legs the indices that 
we want to divide 
 
 
 
 

• Then, we use the Singular Value Decomposition (SVD) technique to 
separate the tensor. We obtain three matrices:
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TO: SVD
We can perform operations on tensors, and we have to decide a notation

for them, in particular using the graphical notation introduced previously.

ReshapeT3 T3

T3 = USV†
Unitary

Diagonal

T3 = U V†S



• Then, we contract the diagonal matrix �  with � . We thus end up with 
two matrices: 
 
 
 

• Finally, we reshape the tensors to have the original legs (2 green, 2 
yellow)

S V†
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TO: SVD
We can perform operations on tensors, and we have to decide a notation

for them, in particular using the graphical notation introduced previously.

=U V†S U SV†

U SV† = T2T1
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SVD: RECAP

ReshapeT3 T3 = U V†SSVD

U SV†
Contraction Reshape

T1 T2



• A quantum state can be represented as a vector. We can reshape that 
vector as an order- �  tensor, where each leg has dimension � . 
 
 
 
 
 
 
 
 

• We can then apply iteratively the separation of the tensor, as seen 
previously.

n 2

…
s1 s2 sn

|ψ⟩ =
1

∑
s1,s2,…,sn=0

cs1,s2,…,sn
|s1, s2, …, sn⟩
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Quantum State
We can finally come back to the quantum computation framework. We will 
so consider an � -qubits state � , with � .n |ψ⟩ ∈ ℋ dim(ℋ) = 2n

|ψ⟩ Reshape
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Quantum State
We can finally come back to the quantum computation framework. We will 
so consider an � -qubits state � , with � .n |ψ⟩ ∈ ℋ dim(ℋ) = 2n

…
s1 s2 sn

|ψ⟩ =
1

∑
s1,s2,…,sn=0

cs1,s2,…,sn
|s1, s2, …, sn⟩

…
s2 sn

|ψ′�⟩

s1

M1

|ψ⟩s1 {si}i=2,…,n

s1

M1 |ψ′�⟩ {si}i=3,…,n



• We end up with a network of �  order-�  tensor and �  order-�  
tensor at the boundaries: 
 
 
 
 
 
 
 
 
 

• But it does not seem to give us a significant advantage. So we do an 
approximation during this procedure, in particular in the separation.

n − 2 3 2 2
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Quantum State
We can finally come back to the quantum computation framework. We will 
so consider an � -qubits state � , with � .n |ψ⟩ ∈ ℋ dim(ℋ) = 2n

s1

M1

s2

M2

sn

Mn
…

Physical index

Auxiliary 
indecise



• We call �  bond dimension of the system, and denote with �  the 
greatest eigenvalue of � . Then: 
 
 
 
 
 

 
 

χmax s1
S
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Truncation
We can finally come back to the quantum computation framework. We will 
so consider an � -qubits state � , with � .n |ψ⟩ ∈ ℋ dim(ℋ) = 2n

U V†S

U′� (V′�)†S′�

Truncation S′� = {si if  si

s1
≤ ϵ and i ≤ χmax

0 otherwise
We then truncate 

the �  term0

We keep the eigenvalues only

if they are big enough. In this

way, we are neglecting the

sub-leading term for the state

description.

We keep only the first highest 
�  eigenvalues. In this way, 

we keep the quantum state 

manageable even for big number

of qubits. However, this may be

a strong approximation. 

χmax



• The truncation means that our tensors has at most dimensions 
� . 
 
 
 
 
 

χmax × χmax × 2
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Matrix product states
The Matrix Product State representation of a quantum state is particularly 
efficient, due to the clever truncation.

s1

M1

s2

M2

sn

Mn
…χmax

Bond dimension 
It controls the entanglement 


of the system Number of coefficients

scales as

�O (ndχ2)



• We start by the state � . It is the usual starting state in 
quantum computation. Furthermore, being a separable state, which 
means with no entanglement, it can be described exactly by MPS 
with a bond dimension � . 

• We then apply gates to evolve the state, bringing it into the target 
state � , as we would do normally with a quantum circuit. 

• However, we have two limitations:

• We can only apply 1-qubit and 2-qubits gates;

• We can only work with quantum circuits with a linear topology; 

 
 
 
 

|00…0⟩

χ = 1

|ψ⟩
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State Evolution
However, we have seen how to write an MPS starting from a state-vector. 
If we are not able to write the state-vector, due to RAM bounds, we 
cannot write the MPS? 
The answer is no, and it is indeed what the simulator does.



• Application of one-quit gates is easy, we simply have to contract the 
qubit tensor with the gate matrix: 
 
 
 
 
 
 
 

• They do not introduce entanglement in the system, and thus do not 
change the bond dimension � .
χ
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One-qubit gates

s1

M1 M2

H sn

Mn
…



• Application of two-qubit gates is a little more involved, but we have all 
the ingredients to do it. 

• First, we need to reshape the gate matrix in an order-4 tensor.

• Then, we perform the contraction.

• Finally, we separate the tensors back. 

 
 
 
 
 
 
 

• They introduce entanglement in the system, and thus the bond 
dimension �  might increase after the application of a two-bit gate, up 
to � 


χ
χmax

!21

Two-qubit gates

U M′�i M′�i+1

Mi Mi+1

CX

Contraction Separation



• There are, however, some subtleties. The truncation induces an error, 
and we want to minimise that error.


• To do so, we have to set the orthogonality center of the tensor 
network on the interested qubit.


• In general, in a tensor network, if all branches connected to a tensor �  
form an isometry between their open indices and their indices 
connected to � , then �  is said do be a center of orthogonality.


• Practically, �  is a center of orthogonality if all the other tensors in the 
network are unitary, and so contract to the identity with their adjoint.

A

A A
A
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Orthogonality Center

M1 M2 M4A

M1 M2 M4A

A

=

A

Orthogonality center 

outlined in red

IdentityIdentity
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Operations on MPS

• The expectation value of any observable (gate): 
 
 
 
 
 
 
 
 

• The entanglement entropy between two partition of the system:


MPS are not only an efficient way of simulating quantum circuits. We can 
also measure interesting quantities:

M1 M2 M4A

M1 M2 M4A

A

=

A

⟨ψ |Gi |ψ⟩ Gi Gi=

Mi Mi+1
Contraction

SeparationU

U V†S

SV =
min(χmax,N)

∑
i=1

si ln si
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Operations on MPS

• Scalar product between quantum state (Fidelity) 
 
 
 
 
 
 

• Perform projective measurements

MPS are not only an efficient way of simulating quantum circuits. We can 
also measure interesting quantities:

⟨ψ |ϕ⟩ =

M3M2 M4A

N3N2 N4B

1

2
( |00⟩ + |11⟩)

Projective 

measurements

|00⟩ with prob  1
2

|11⟩ with prob  1
2
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Circuit Linearisation
MPS are restrained to be used in a linear topology. However, any circuit

can be mapped into a linear topology using swap gates.

Linearization

There are algorithms that minimise the number of swaps to map an 
arbitrary circuit to a linear topology.
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CINECA m100

Marconi 100 Supercomputer 
Nodes: 980 
Cores: 32/node

RAM: 256 GB/node

Image from CINECA

�  qubits, �  TB

for exact simulation
300 1079
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Future development

Fault-tolerant 
threshold

Quantum 
Supremacy

Quantum 
Machine Learning
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Questions?
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Try it yourself!
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Thank you  
for your attention

Marco Ballarin


