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Introduction

Classical bit b € {0,1}

quantum qubit |y) € #Z,dim(#) = 2
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(Classical simulations
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Tensors

04 = order-0 tensor = scalar Tensor leg

order-1 tensor = vector

<
|l

U = order-2 tensor = matrix

— T = order-3 tensor = tensor
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Tensor Manipulation

We can manipulate Tensors and reshape their indexes (legs) as we prefer:
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This means that a tensor of any order can be mapped to a matrix. So, we
can use linear algebra to work with tensors.
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T'ensor operations

We can perform operations on tensors, and we have to decide a notation
for them, in particular using the graphical notation introduced previously.

We start by introducing the complex conjugate of a order-1 tensor:
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T'ensor operations

We can perform operations on tensors, and we have to decide a notation
for them, in particular using the graphical notation introduced previously.

Then we introduce the contraction between two tensor along their legs.
e We start from two order-1 tensor, and it is equivalent to the scalar
product between two vectors:
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* Then, the contraction between two order-2 tensor is simply the matrix-
matrix multiplication:

(AB)ik = Z aijbjk =
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TO: Contraction

We can perform operations on tensors, and we have to decide a notation
for them, in particular using the graphical notation introduced previously.

e In general, we can contract any leg of an order-n tensor:
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* What will be done in practice by the simulator, however, will be a little
different:
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We can perform operations on tensors, and we have to decide a notation
for them, in particular using the graphical notation introduced previously.

* Finally, we present a way to separate tensors. This means that we can
pass from a single tensor to two tensors. First, we reshape it such that
we have a matrix, dividing separating in different legs the indices that
we want to divide
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* Then, we use the Singular Value Decomposition (SVD) technique to
separate the tensor. We obtain three matrices:

Unitary
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We can perform operations on tensors, and we have to decide a notation
for them, in particular using the graphical notation introduced previously.

e Then, we contract the diagonal matrix .S with V. We thus end up with
two matrices:

- U - § =V = — U —sV’

* Finally, we reshape the tensors to have the original legs (2 green, 2
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(Juantum State

We can finally come back to the quantum computation framework. We will
so consider an n-qubits state |y) € #, with dim(#") = 2".

* A quantum state can be represented as a vector. We can reshape that
vector as an order-n tensor, where each leg has dimension 2.

1
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* We can then apply iteratively the separation of the tensor, as seen
previously.
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(uantum State CINECA

We can finally come back to the quantum computation framework. We will
so consider an n-qubits state |y) € #, with dim(#") = 2".
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(uantum State CINECA

We can finally come back to the quantum computation framework. We will
so consider an n-qubits state |y) € #, with dim(#") = 2".

e We end up with a network of n — 2 order-3 tensor and 2 order-2
tensor at the boundaries:

PN
M, M, _‘_\ ;) . —— M,
P N |
S S _— S
N 2 Auxiliary n
{ indecise

Physical index

 But it does not seem to give us a significant advantage. So we do an
approximation during this procedure, in particular in the separation.
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T runcation

We can finally come back to the quantum computation framework. We will
so consider an n-qubits state |y) € #, with dim(#") = 2".

 We call y,, . bond dimension of the system, and denote with s, the
greatest eigenvalue of S. Then:

A A A /N
: / Si if‘i <eandi <Ly, . ! We then truncate
{ Truncation S = 5=
0 oftherwise the O term

— U/ - S/ _(V/)T

We keep the eigenvalues only We keep only the
If they are blg enough. In this eigenva|ues_ In this way,

way, we are neglecting the we keep the quantum state

sub-leading term for the state  panageable even for big number

description. of qubits. However, this may be
a strong approximation.
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Matrix product states

The Matrix Product State representation of a quantum state is particularly
efficient, due to the clever truncation.

e The truncation means that our tensors has at most dimensions
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State Evolution

However, we have seen how to write an MPS starting from a state-vector.
If we are not able to write the state-vector, due to RAM bounds, we

cannot write the MPS?
The answer is no, and it is indeed what the simulator does.

» We start by the state | 00...0). It is the usual starting state in
quantum computation. Furthermore, being a separable state, which
means with no entanglement, it can be described exactly by MPS

with a bond dimension y = 1.

* We then apply gates to evolve the state, bringing it into the target
state |y), as we would do normally with a quantum circuit.

e However, we have two limitations:
* We can only apply 1-qubit and 2-qubits gates;
* We can only work with quantum circuits with a linear topology;
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One-qubit gates

* Application of one-quit gates is easy, we simply have to contract the
qubit tensor with the gate matrix:

M, M, — M,
| |
S1 H Sn

* They do not introduce entanglement in the system, and thus do not
change the bond dimension y.
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T'wo-qubit gates

* Application of two-qubit gates is a little more involved, but we have all
the ingredients to do it.
* First, we need to reshape the gate matrix in an order-4 tensor.
* Then, we perform the contraction.
* Finally, we separate the tensors back.

— M, —M;;,; -

| | Contraction Separation— v/ —— M/, —
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* They introduce entanglement in the system, and thus the bond
dimension y might increase after the application of a two-bit gate, up

10 Xinax
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Orthogonality Center

CINECA

There are, however, some subtleties. The truncation induces an error,
and we want to minimise that error.

To do so, we have to set the orthogonality center of the tensor
network on the interested qubit.

In general, in a tensor network, if all branches connected to a tensor A
form an isometry between their open indices and their indices

connected to A, then A is said do be a center of orthogonality.

Practically, A is a center of orthogonality if all the other tensors in the
network are unitary, and so contract to the identity with their adjoint.

Identityl/ — - - == - > A Jdentity
| | |
| | | | | | : - < | >
M, M, — A —— M, | A
|

_______ / "\ No -

Orthogonality center
outlined in red
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Operations on MPS CINECA

MPS are not only an efficient way of simulating quantum circuits. We can
also measure interesting quantities:

* The expectation value of any observable (gate):

M, M, A — M, A
| |

(Ww|Gly) = G; = G,
| |

Ml M2 A B M4 A

* The entanglement entropy between two partition of the system:
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Operations on MPS CINECA

MPS are not only an efficient way of simulating quantum circuits. We can
also measure interesting quantities:

e Scalar product between quantum state (Fidelity)

A — M, M, M,
wlg) = | | | |
B —— N, N, N,
* Perform projective measurements
N , Projective
do — H ’ /: measurements r

100) with prob -

1
o [ | $(|oo>+|11>)—><

|11) with prob %

C= 24
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Circuit Linearisation

MPS are restrained to be used in a linear topology. However, any circuit
can be mapped into a linear topology using swap gates.

do —H——— do — H

Linearization

d1 - e » 01 #—T %‘?—ﬂ
q2 :l'—-ﬂ;'.' q2 | Y A | /./

There are algorithms that minimise the number of swaps to map an
arbitrary circuit to a linear topology.
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CINECA

Marconi 100 Supercomputer

Nodes: 980
Cores: 32/node
RAM: 256 GB/node

Image from CINECA

Quantum Fourier Transform, Ymax = 10%

300 qubits, 107° TB
for exact simulation

102':

Time [s]

—— FORTRAN MPS simulation
---- Exact simulation on m100, 128 threads
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Future development
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QUANTUM COMPUTING The power of quantum neural networks Machine learning of high dimensional data on a noisy quantum processor
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Try it yourself? CINECA
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Thank you
for your attention

Marco Ballarin 30



