

MILANO 1863

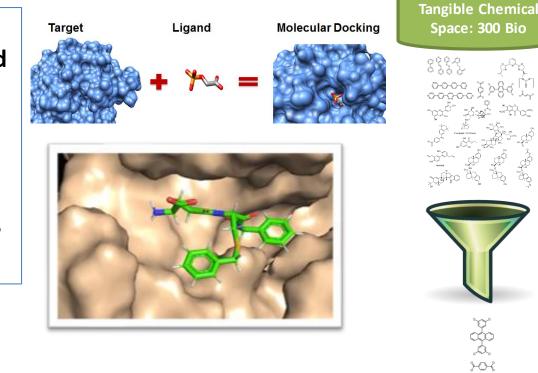
Molecule Unfolding with Quantum Annealing

Intro to Quantum Computing 25 June 2021

Molecular Docking for Virtual Screening

Molecular docking is a method to calculate the preferred position and shape of one molecule to a second when bound to each other

- Shape Complementarity
- Scoring function to evaluate the binding affinity



3 Phases Process

Ligand Expansion

- MOL2 ligand elaboration
- Identification of the rotatable bonds
- Internal distances maximization
- Removes tool related bias (e.g. smile-to-3D)

Initial Placement

- Ligand main fragments decomposition
- Ligand initial poses Identification
- Placement of the ligand into the pocket with rigid roto-translations

Shape Refinement

- Use of the rotatable bonds to modify the ligand shape and to match the protein pocket
- Docking Score Maximization

3 Phases Process

Ligand Expansion

- MOL2 ligand elaboration
- Identification of the rotatable bonds
- Internal distances
 maximization
- Removes tool related bias (e.g. smile-to-3D)

Initial Placement

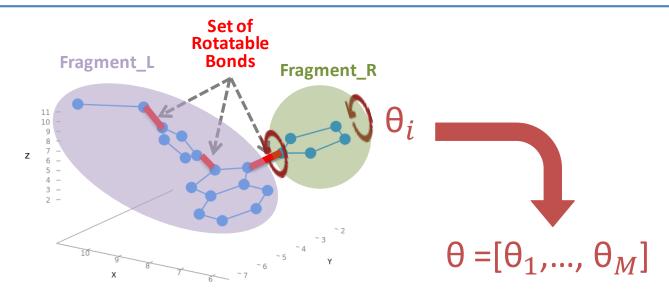
- Ligand main fragments decomposition
- Ligand initial poses Identification
- Placement of the ligand into the pocket with rigid roto-translations

Shape Refinement

- Use of the rotatable bonds to modify the ligand shape and to match the protein pocket
- Docking Score Maximization

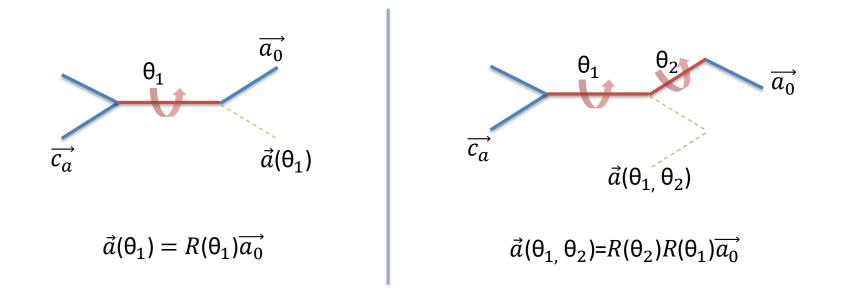
Problem Definition

Objective: find the unfolded torsion configuration that maximizes the molecular volume, or equivalently, that maximizes the distances between fragments.

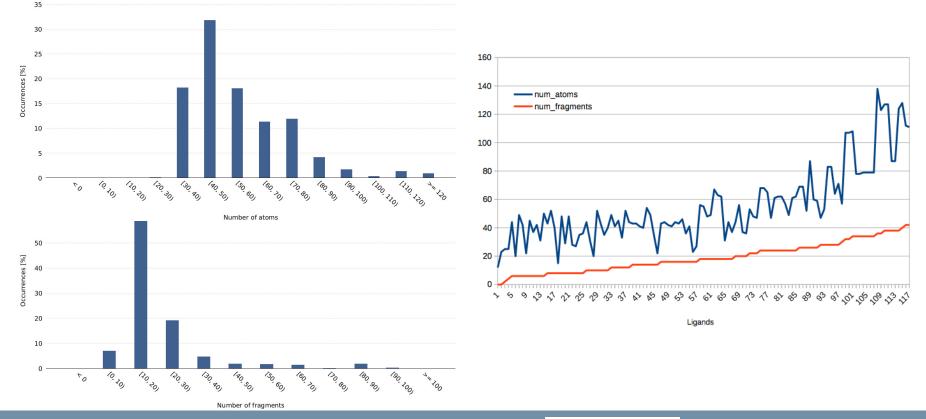


Problem Definition

To each **torsion** is associated is a **rotation matrix R**.

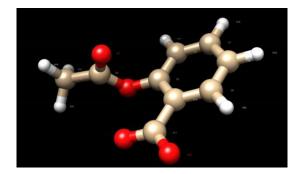


Overview of the problem size (ComplexDB)

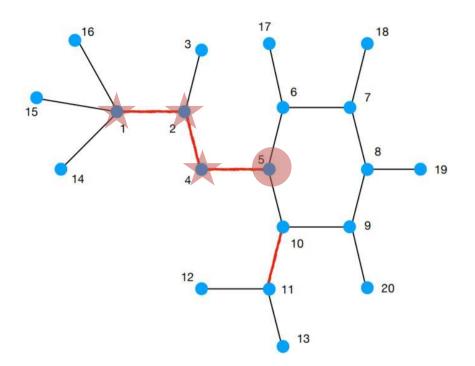


CINECA

Molecule Unfolding: Rotatable Betweenness Centrality



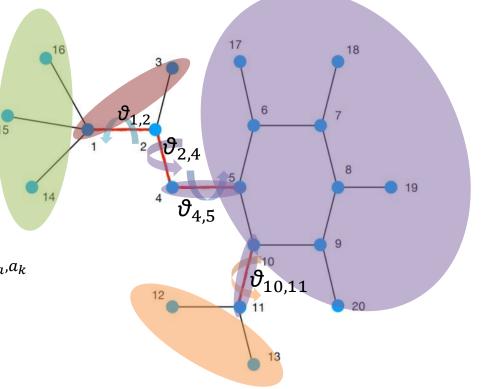
Betweenness centrality:
$$g(v) = \sum_{s
eq v
eq t} rac{\sigma_{st}(v)}{\sigma_{st}}$$



Molecule Unfolding: Rotatables Influence Set

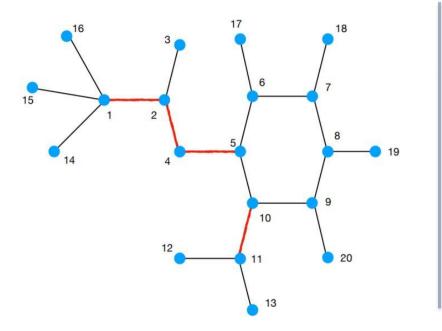
Rotatables Influence set: $I_S = E_{C_a, a_k} \cap E_R$

 $E_R = Rotable \ bonds;$ $E_{C_a,a_k} = Bonds \ on \ the \ shortest \ path \ \sigma_{C_a,a_k}$

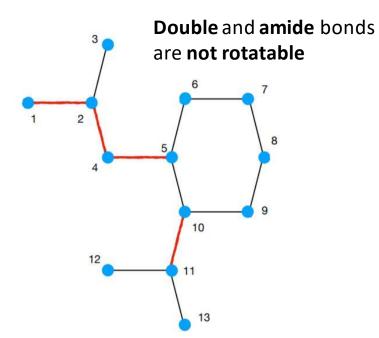


Molecule Unfolding

Original 2D molecule:

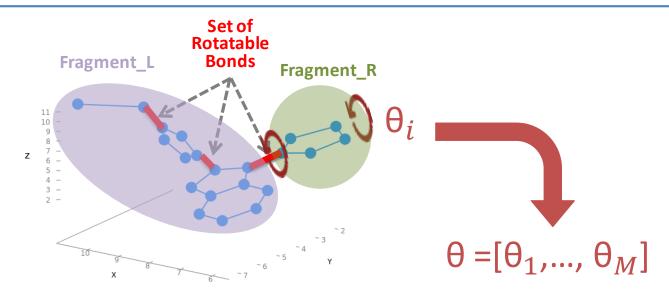


Without Hydrogen:

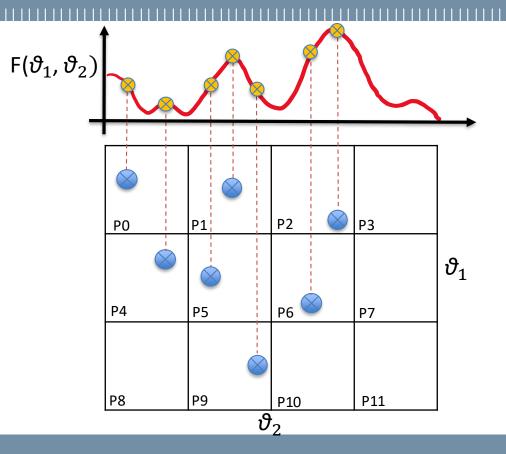


Problem Definition

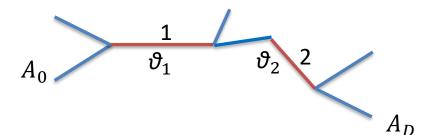
Objective: find the unfolded torsion configuration that maximizes the molecular volume, or equivalently, that maximizes the distances between fragments.



Molecule Conformation Exploration: Random Search



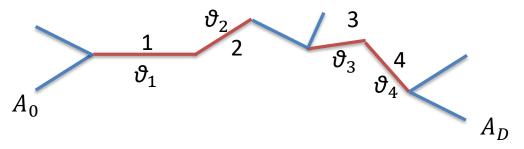
Random Search



Molecule Conformation Exploration: Greedy

M= Measure total sum of internal distances

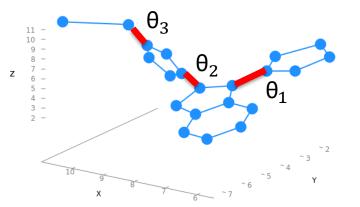
GeoDock-inspired



Greedy:

- GeoDock = $\vartheta 1 M \vartheta 2 M \vartheta 3 M \vartheta 4 M$
- Batch = i) ϑ1, ϑ2 M ϑ3, ϑ4 M
 ii) ϑ1, ϑ2, ϑ3 M ϑ4 M
 iii) ϑ1, ϑ2, ϑ3, ϑ4 M

Combinatorial Optimization Problem Definition



It is convenient to identify a **conformation of a molecule** with M torsions by a **torsion vector**

 $[\theta_1,\ldots,\theta_M]$

Where each torsion θ_N can assume values in [0, 2 π).

Objective: find the unfolded torsion configuration that maximizes the molecular volume, or equivalently, that maximizes the distances between fragments

Combinatorial Optimization Problem Definition

Objective: find the unfolded torsion configuration

$$[\theta_1^{unfold}, \, \dots, \, \theta_M^{unfold}]$$

that maximizes the sum of distances $D_{ab}(\theta)$ between fragments a and b

$$D(\theta) = \sum_{a,b} D_{ab}(\theta)^2$$

where
$$D_{ab}(heta)^2 = ||ec{a}_0 - R(heta)ec{b}_0||^2$$

Constructing the Binary Optimization problem

Consider a discretization of the torsion angle θ_i into d possible values

$$\theta_i = [\theta_i^1, \theta_i^2, \theta_i^3, ..., \theta_i^d]$$

And introduce a **binary variable** x_{ik} with $1 \le k \le d$, such that

$$x_{ik} = \begin{cases} 1 & \text{if } \theta_i = \theta_i^k; \\ 0 & \text{otherwise.} \end{cases} \text{ with the constraint } \sum_{k=1}^a x_{ik} = 1 \end{cases}$$

1

Constructing the Binary Optimization problem

This also induces a discretization of the sine and cosine for each torsion

$$\sin(\theta_i) = \sum_{k=1}^d \sin(\theta_i^k) \ x_{ik} \qquad \cos(\theta_i) = \sum_{k=1}^d \cos(\theta_i^k) \ x_{ik}$$

With such encoding, the **rotation matrix** $R(\theta_i)$ associated **the torsion angle** θ_i becomes **a function of** all the **binary variables** x_{ik} needed to represent the angle θ_i

$$R(\theta_i) = R(x_{i1}, x_{i2}, ..., x_{id})$$

Constructing the High-order Unconstrained Binary Optimization (HUBO) problem

The general form of the HUBO optimization function is

$$O(x_{ik}) = A \sum_{i} \left(\sum_{k=1}^{d} x_{ik} - 1 \right)^{2} - \sum_{a,b} D_{ab}(\theta)^{2}$$

where the pairwise distances are expressed using the binary variables

$$D_{ab}(\theta)^2 = ||\vec{a}_0 - R(\theta)\vec{b}_0||^2$$

In general, if $D_{ab}(\theta)$ depends on *m* torsions, $D_{ab}(\theta)$ contains terms up to the *m*-th order, hence the highest order in the HUBO is 2*m*

HUBO Problem Structure

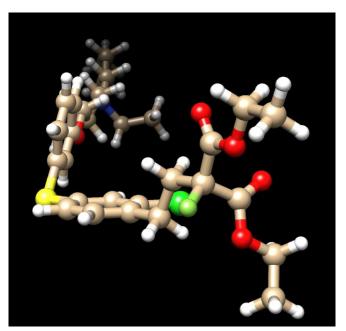
In order to obtain a precision of $\Delta \theta_i$, the number of variables needed for each torsion is

$$d = \frac{2\pi}{\Delta \theta_i} = \frac{2\pi}{\theta_i^{k+1} - \theta_i^k}$$

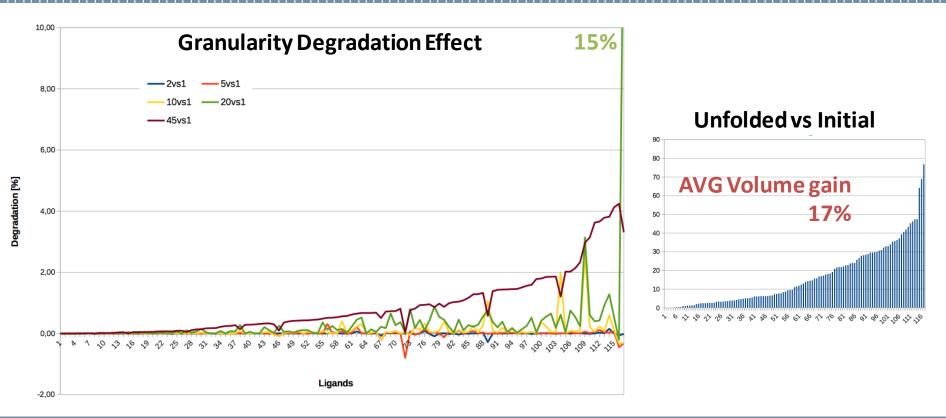
Given a molecule with M torsions, the total number of binary variables x_{ik} in the HUBO

$$n = d \times M = \frac{2\pi}{\Delta \theta_i} \times M$$

Molecules: 20 to 50 atoms - 10 torsions



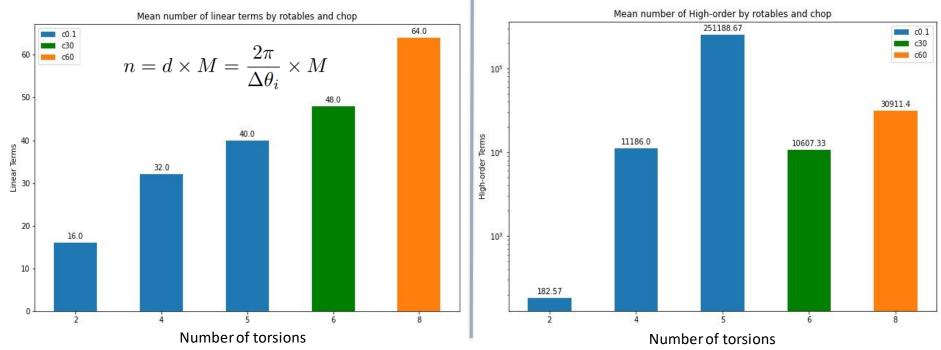
Angle subsampling effect on the unfolding degradation



HUBO Problem Structure at $\Delta \theta_i = \pi/4$

HUBO linear terms

HUBO high order terms (Log-scale)

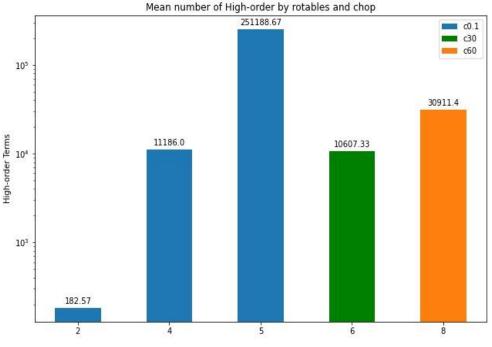


HUBO Problem Approximation

Delete HUBO terms below a certain **threshold.** Applied in **two phases:**

- Speed up the construction of the HUBOs;
- Speed up the transformation of HUBOs into QUBOs (done via dimod.make_quadratic);

Approximated HUBO problems **solvable** with **DW2000Q** and **Advantage**



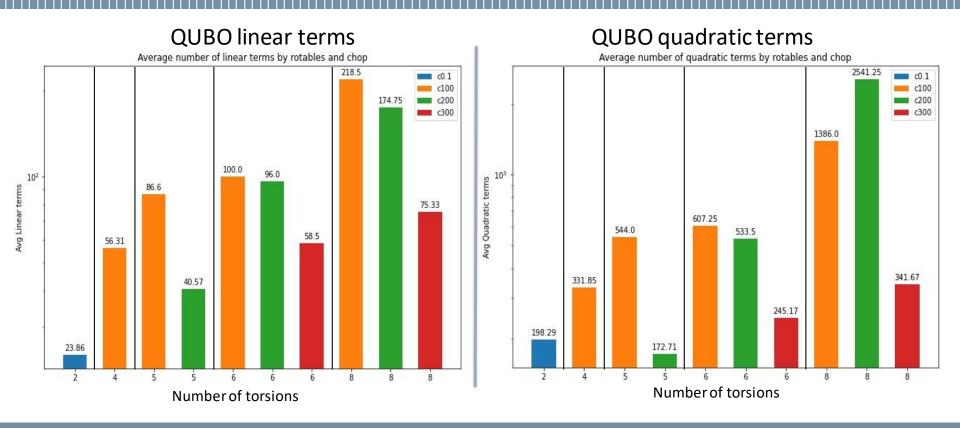
HUBO high order terms (Log-scale)

Number of torsions

POLITECNICO MILANO 1863

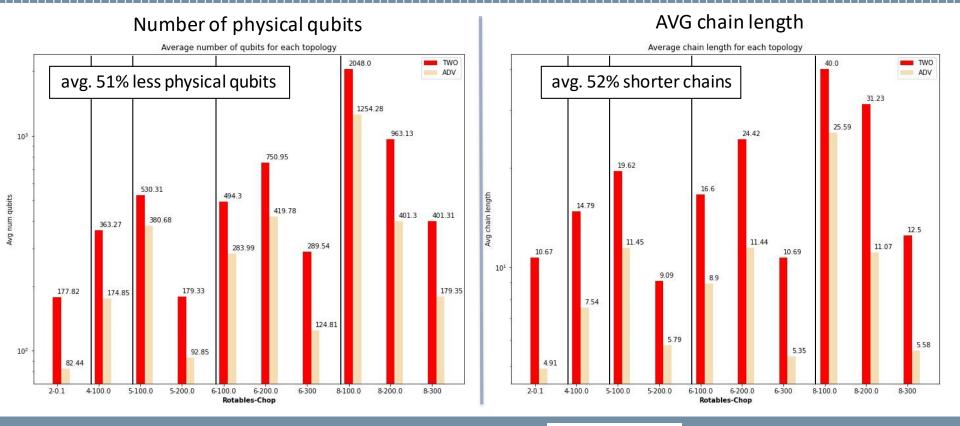
22

Form HUBOs to QUBOs



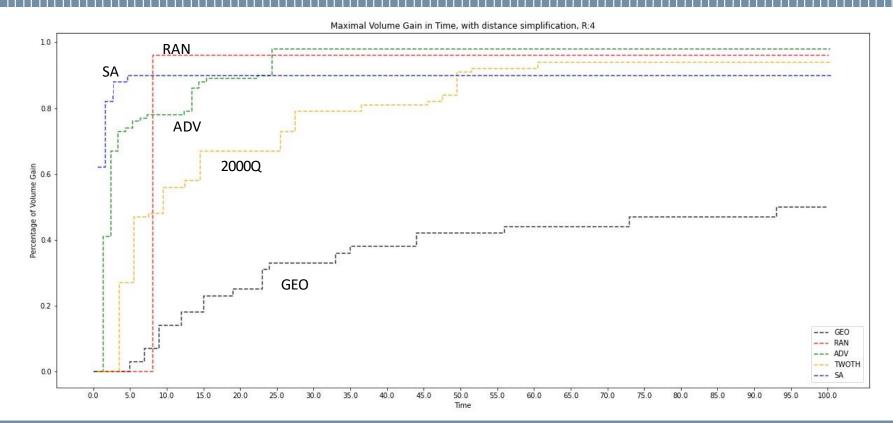
CINECA

Embeddings DW2000Q & Advantage



CINECA

Results, 4 Torsions : Volume Gain in Time (seconds)



CINECA

Results, 6 Torsions : Volume Gain in Time (seconds)

Maximal Volume Gain in Time, with distance simplification, R:6 1.0 SA RAN 0.8 ADV Percentage of Volume Gain 6.0 2000Q 0.2 GEO --- GEO --- RAN --- ADV _____ --- TWOTH 0.0 ---- SA 55.0 65.0 70.0 75.0 20.0 25.0 35.0 40.0 45.0 50.0 60.0 80.0 85.0 90.0 0.0 5.0 10.0 15.0 30.0 95.0 100.0 Time

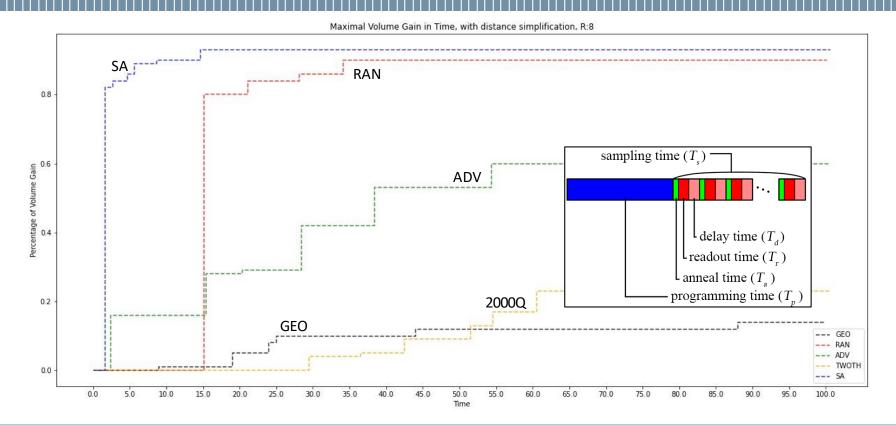
CINECA

Results, 8 Torsions : Volume Gain in Time (seconds)

Maximal Volume Gain in Time, with distance simplification, R:8 SA RAN -----0.8 Percentage of Volume Gain 6.0 ADV 2000Q 0.2 GEO --- GEO --- RAN --- ADV TWOTH 0.0 --- SA 55.0 70.0 75.0 90.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 65.0 80.0 85.0 95.0 100.0 Time

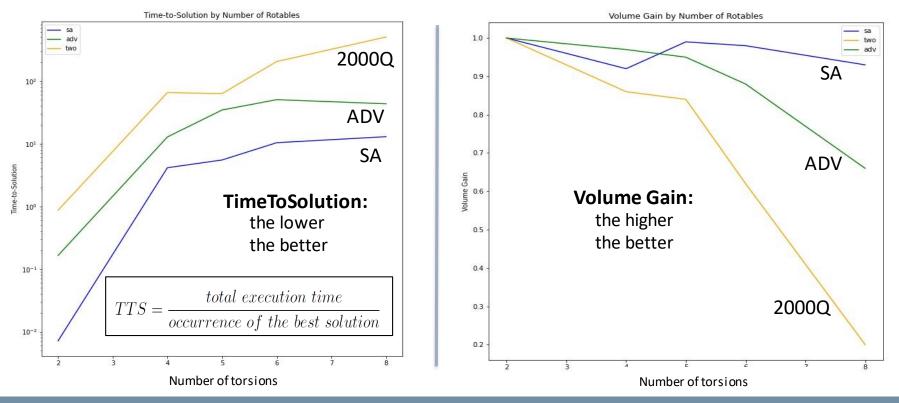
CINECA

Results, 8 Torsions : Volume Gain in Time (seconds)



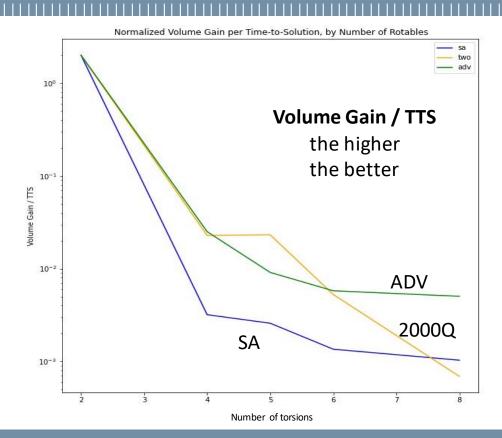
CINECA

Results: Time To Solution (TTS) & Volume Gain



CINECA

Results: Normalized Volume Gain per TTS



Normalized Volume Gain per TTS:

- Takes into account both quality of solution and TTS
- Measures how fast the method fails to provide good solutions
- Advantage has lower avg. slope with respect to SA and DW2000Q

sa	two	adv
1.609948	6.0189816	1.36206524

Conclusions

- We tackled the problem of Molecular Unfolding, an important step in molecular docking.
- New HUBO formulation that can be solved on D-WAVE annealers has been developed.
- We have observed that by **increasing** the **approximation threshold with** the **problem size**, it is **possible to embed** formulations that couldn't be otherwise.
- Embedding our problems on Advantage, compared to the DW2000Q, cost 51% less in terms of physical qubits and with chains 52% shorter.
- In terms of absolute time (seconds), SA is the fastest method to provide close to optimal solutions.
- Advantage significantly outperforms DW2000Q in terms of TTS and VolumeGain by increasing torsions. Advantage also show a better NormalizedVolumeGain/TTS scaling w.r.t. SA

