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Linear Algebra

Tensor Product
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Postulates of Quantum Computing (1)

Quantumly

To a closed quantum system is associated a space of states H which is a
Hilbert space. The pure state of the system is then represented by a
unit norm vector on such Hilbert space.

The unit of quantum information Is the quantum bit a.k.a. Qubit

State of a qubit:

|0p= aloy + 1= ()
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Postulates of Quantum Computing (1)

Space of states: H= C’
State of a qubit:
= o) + = (%
[ 9= [0y + B2 (B)
L,BEC o [P-a

Canonical basis: |0) = ( (1) ): 1) = ( 2 )

|1>

Other basis: ‘::) — L (‘O) -+ ‘1))

CINECA ()2 hs ue



Postulates of Quantum Computing (1)

Different physical realization of qubits

Physical support Name Information support 0) 1)
Polarization encoding Polarization of light Horizontal Vertical
Photon Number of photons Fock state Vacuum Single photon state
Time-bin encoding Time of arrival Early Late
Coherent state of light Squeezed light Quadrature Amplitude-squeezed state Phase-squeezed state
N J
Y
Canonical Basis
— «|0 1 ‘ °
V) = al|0)+/5 ) 0) = 1 =
1
QUANTUM
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Postulates of Quantum Computing (2)

Quantumly

The space of states of a composite system is the tensor
product of the spaces of the subsystems

CE?,@ Cl@ @ d:q,

State of N qubits:

D<i\ooo_.o> 4 o o ioo-_o>+°(3!010.,o>+,,_ o{n\iii-.i>

ds & C ZL\"lL\Z:i
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Postulates of Quantum Computing (2)

Quantum Entanglement
States that can NOT be written as tensor product are entangled

WY £ (Yoo [V e @ [V
Bell’s states
oo L oL
P >—ﬁ(|0>®l0>+ll>.®ll>) o) = ﬁ(|0>®!1> 1) ®10))
o1 o1 _
| >—ﬂ(|0>®|1>+|1>®|0>) |®7) = ﬁ(|0>®|0> 1) ® (1))

CINECA ()2 hs ue



Postulates of Quantum Computing (3)

Quantumly

The state change of a closed quantum system is
described by a unitary operator

LA ey PEY = € (YD
4T - +HE

Schrodinger Equation
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Postulates of Quantum Computing (4)

Quantumly

. To any observable physical quantity is associated an hermitian operator O
O |o;) = 0;]0;)
. A measurement outcomes are the possibile eigenvalues {o;}.

. The probability of obtaining o; as a result of the measurement is

Pr(o:)= 1{lo)|*

. The effect of the measure is to change the state [y) into the eigenvector of O

1Y) - |o;)
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Postulates of Quantum Computing (4)

Different physical realization of qubits

Physical support Name Information support 0)
Polarization encoding Polarization of light Horizontal Vertical
Photon Number of photons Fock state Vacuum Single photon state
Time-bin encoding Time of arrival Early Late
Coherent state of light Squeezed light Quadrature Amplitude-squeezed state Phase-squeezed state

N

N

v

Observable quantities

O |o;) = 0;]0;)

N

Canonical Basis

0)=(5) m=(7)
3
) = |0)+5|1)
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Postulates of Quantum Computing (4)

Different physical realization of qubits

Physical support Name Information support 0) 11)

Polarization encoding Polarization of light Horizontal Vertical
Photon Number of photons Fock state Vacuum Single photon state

Time-bin encoding Time of arrival Early Late
Coherent state of light Squeezed light Quadrature Amplitude-squeezed state Phase-squeezed state

R JN J

~ Y
Observable quantities Canonical Basis
_ _ 0=(s).m=(1)
Z|0)=10)  X|+)=]|+) 1
Z|1)=-1) X|[=)=~[=)
) = al0)+5[1)
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Postulates of Quantum Computing (4)

Different physical realization of qubits

Physical support Name Information support 0) 11)
Polarization encoding Polarization of light Horizontal Vertical
Photon Number of photons Fock state Vacuum Single photon state
Time-bin encoding Time of arrival Early Late
Squeezed light Quadrature Amplitude-squeezed state Phase-squeezed state

Coherent state of light

N

N

N

Observable quantities

Linear
Polarization

Z

Circular
Polarization
X

N

Canonical Basis

0=(5) m=(?)

J

) = a]0)+ 3]1)
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Postulates of Quantum Computing (4)

Outcome
Example:
Measurement |O> con Pr = ‘05‘2
Initial qubit state 7 <
|1) con Pr = ||

) = a|0) + 3]1)

X < +) con pr = It

_ _ la=p
|—) con Pr = =
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Quantum Communication
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Quantum Communication

Classical vs Quantum Channel

Classical information channel iIs a communication channel used to
transmit classical information

Unit of classical information -> BIT € {0, 1}

Example: transmission
cables (channel) of
electrical impulses

(classical information)
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Quantum Communication

Classical vs Quantum Channel

Quantum information channel is a communication channel that can be used
to transmit quantum information

Unit of qguantum information -> QUBIT

) = al0)+5[1)

It is capable of transmitting not only base states (|0), |1)) but also their
guantum superimpositions (e.g. |0) + |1)).

Coherence is maintained while transmitting through the channel.
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Quantum Communication

Quntum information encoded into photons

Physical support Name Information support 0) 1)
Polarization encoding Polarization of light Horizontal Vertical
Photon Number of photons Fock state Vacuum Single photon state
Time-bin encoding Time of arrival Early Late
Quadrature Amplitude-squeezed state Phase-squeezed state

Coherent state of light

Squeezed light

Quantum Channel:

Free-space
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Quantum Communication

Quntum information encoded into photons

Physical support Name Information support 0) 1)
Polarization encoding Polarization of light Horizontal Vertical
Photon Number of photons Fock state Vacuum Single photon state
Time-bin encoding Time of arrival Early Late
Coherent state of light Squeezed light Quadrature Amplitude-squeezed state Phase-squeezed state

Quantum Channel:

Optical fiber
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Quantum Communication

AN

Physical support

Photon

Polarization &

Number of p

Time-bin enct

Coherent state of light

Squeezed lig
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Quantum Communication

No-Cloning Theorem

Given the postulates of quantum mechanics, it not possible to copy
exactly (cloning) an unknown gquantum state

4

Does not exist an operator U such that, given a state |@)

relizes Uly)|a) = [10)])

On the other hand, it is possible to perform cloning if the state belongs to
an orthogonal set of states -> e.g. when it is a classic state
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Quantum Teleportation
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Quantum Teleportation
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Quantum Teleportation
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Quantum Teleportation

Alice wants to send a quantum state to Bob, having only a classical
communication channel available.
Specifically, suppose you want to send the state of the qubit labelled C.

Classical communication channel

Alice Bob
Y)e = al0)c + Bl1)c
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Quantum Teleportation

Remember that Alice cannot make a copy of the state of her qubit due
to the No-Cloning theorem

Classical communication channel

Alice Bob
Y)e = al0)c + B[1)c

Cloning.. |¢WC
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Quantum Teleportation

Alice and Bob share a pair of entangled qubits (named A and B)
transmitted to them by an Entangled Qubit source (via quantum channels)

Classical communication channel

®
Alice @ ‘ Bep
<
Uy O
Yo =al)c +Allle ey ST
— L1
#7) = —(0)®[0) + 1) o 1)
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Quantum Teleportation

The global state of the three qubits possessed by Alice and Bob is

Y)e ® |27) a8 = (al0)c + Bl1)c) ® %(OM ®10)p +[1)a ®|1)B)
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Quantum Teleportation

The global state of the three qubits possessed by Alice and Bob is

) @ |27)aB _an)(? -+ 5|1>0ﬂ ®[%(0>A ®[0)p +[1)a ® ‘DBﬂ

~

The state of qubit C Entangled qubit pair Aand B
that Alice wants to shared by Alice and Bob
send to Bob
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Quantum Teleportation

The global state of the three qubits possessed by Alice and Bob is

e ® ) an = (@l0)e + Bll)c) @ %(om ® 105+ |1)a ® [1)5)

Using the following relation (Bell states)

[27) = —(|0) ® [0) + [1) ® [1))

7)) = —(10) ® [1) + [1) ® |0))

Sl

™) =

[@7) =

(10)® 1) = 1) ® |0))

(10) ®10) = 1) ® [1))

&\H&\H

CINECA ()2 hs ue



Quantum Teleportation

It is possible to rewritethe global state as

@ )oa ® (a|0)g+ B|1)B) + |2 )ca ® (a|0)s — B|1)5)

U )oa ® (@fL)s +Bl0)5) + ¥ )ea ® (all)s — B10)5)]

+ DN | =

Teleportation occurs when Alice measures her
two qubits A and C in the Bell basis

D) oa, [ Vea, [P )ea, [P )oa
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Quantum Teleportation

The result of Alice's measurement is that the state of the three
gubits collapses into one of the following four states (with equal
probability). Alice uses two-bit encoding (also known to Bob) to
describe the measurement result

Encoding
|2 )cu ® (a]0)p + B|1)B) — 00

«|[® Voa ® (a|0)p — B|1)B) — 01
- \I’+>C’A X (Oﬂ 1>B —|—/60>B) — 10
| ¥ )ca ® (a|l)p — B|0)B) — 11
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Quantum Teleportation

The result of Alice's measurement is that the state of the three
gubits collapses into one of the following four states (with equal
probability). Alice uses two-bit encoding (also known to Bob) to
describe the measurement result

|27 )ca ® (a
¢|P7)ca ® («
o \IFL)CA X (le
e | ¥ )cu ® (a

0)p + B
0)p — B
L)p + B
1) — B

Encoding
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Quantum Teleportation

Alice sends the two bits of information to Bob via the classic channel.
Bob applies appropriate local operations to achieve teleported state

Classical communication channel

00

Alice Bob

®F)ca (@]0)5 + B[1)B)
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Quantum Teleportation

The result of Alice's measurement is that the state of the three
gubits collapses into one of the following four states (with equal
probability). Alice uses two-bit encoding (also known to Bob) to
describe the measurement result

|27 )ca ® (a
¢|P7)ca ® («
o \IFL)CA X (le
e | ¥ )cu ® (a

0)p + B
0)p — B
L)p + B
1) — B

Encoding
1)B) — 00
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Quantum Teleportation

Alice sends the two bits of information to Bob via the classic channel.
Bob applies appropriate local operations to achieve teleported state

Classical communication channel

01

Bob applies the
Z operator

Alice Bob

D7 )ca Z(a]0)p — B|1)B) =
= (a|0)B + B|1)B)
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Quantum Teleportation

The result of Alice's measurement is that the state of the three
gubits collapses into one of the following four states (with equal
probability). Alice uses two-bit encoding (also known to Bob) to
describe the measurement result

Encoding
|2 )cu ® (a]0)p + B|1)B) — 00

«|[® Voa ® (a|0)p — B|1)B) — 01
- \I’+>C’A X (Oﬂ 1>B —|—/60>B) — (10
| ¥ )ca ® (a|l)p — B|0)B) — 11
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Quantum Teleportation

Alice sends the two bits of information to Bob via the classic channel.
Bob applies appropriate local operations to achieve teleported state

Classical communication channel

10

Bob applies the
X operator

Alice Bob

) eoa X (a|l)p + Bl0)B) =
= (a]0)p + B[1)B)
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Quantum Teleportation

The result of Alice's measurement is that the state of the three
gubits collapses into one of the following four states (with equal
probability). Alice uses two-bit encoding (also known to Bob) to
describe the measurement result

|27 )ca ® (a
¢|P7)ca ® («
o \IFL)CA X (le
e | ¥ )cu ® (a

0)p + B
0)p — B
L)p + B
1) — B

Encoding
1)B) — 00

1)) — 01
0)p) — 10
0)p) — |11
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Quantum Teleportation

Alice sends the two bits of information to Bob via the classic channel.
Bob applies appropriate local operations to achieve teleported state

Classical communication channel

11

Bob applies the
ZX operator

Alice Bob

¥ ) ea zx (a|l)p — B|0)B) =
= (a|0)p + B|1)B)
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Quantum Teleportation

Quantum Teleportation Protocol: Final Comments

 Quantum teleportation is not instantaneous: in order to reconstruct
the initial state, Bob must first receive the two bits associated with
Alice's measurement. These are transmitted via a classical
communication channel, so the signal cannot travel at superluminal
speed (in accordance with special relativity).

 Quantum teleportation respects No-Cloning: the measurement by

Alice leads to the collapse of the wave function and therefore to the loss
of the Initial state in her possession, respecting the No-Cloning theorem.
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Quantum Teleportation

Quantum Teleportation Protocol: Final Comments

Experimental realizations of the protocol:

* In 2020, a team of researchers used quantum teleportation over 44 km
of optical fiber ->

* In 2017 the record for the implementation of the "ground-to-satellite"
guantum teleportation protocol over a distance ranging from 500 km
up to 1,400 km ->

CINECA ()2 hs ue


https://arxiv.org/abs/2007.11157
https://www.nature.com/articles/nature23675

Superdense Coding
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Superdense Coding

Alice and Bob pre-share a pair of entangled qubits.
Alice wants to communicate two bits of information to Bob
by sending a single qubit.

Quantumcommunication channel

Alice

o L
@ )—ﬁ(|0)®|0)+|1>,®l1>)
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Superdense Coding

Alice applies a certain local operation on the qubit in her
possession in order to encode two bits of information

1 Encoding
7)) = E('(’) ®0) + (1) ® 1)) — 00
\
1 % 1) = —=(0 @) +h o) — 01
)= —(0) 8 10) + 1) & 1) <2, 1
L )= 0 em -meln) . 11
3) = %(|o>®|o> 1) ®1) — 10
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Superdense Coding

Alice sends her qubit to Bob through the quantum communication
channel, hence qubit of information is communicated from Alice to Bob

Quantumcommunication channel

©

Alice Bob
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Superdense Coding

Alice sends her qubit to Bob through the quantum communication
channel, hence qubit of information is communicated from Alice to Bob

Quantumcommunication channel

®E

Alice Bob

Superdense Coding occurs when Bob measures his two qubits in the
"Bell” basis to determine which state was prepared by Alice

00: [®") 01:|¥™") 10:|@~) 11|¥ )
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Superdense Coding

Teleportation vs Superdense Coding

. Teleportation Superdense Codin
The teleportation protocol can be P P &
thought of as an inverted version of T " Transmit two
the superdense coding protocol, in the ransmit one classical bits
sense that Alice and Bob "swap their qubit Using two using one
equipment". classical bits qubit

Superdense Coding Experiments:
* In 2017, a fidelity of 0.87 achieved with optical fibers.

* Nel 2018, High dimensional ququarts (states obtained in photon pairs via non-degenerate
spontaneous parametric down-conversion) used to achieve a 0.98 fidelity.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.050501
https://advances.sciencemag.org/content/4/7/eaat9304

Quantum Cryptography
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Quantum Cryptography

Public Key Cryptography: RSA

Alice Bob .
pnvate pubhc publlc pnvate PUb“C key:
i i - Known by all. Used by the sender to
i encrypt a secret message
Plain text Plain text

Private key:
Known to the owner only. Used by
the receiver to decrypt the message

Cypher text Cypher text

send
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Quantum Cryptography

Public Key Cryptography: RSA
The RSA cryptosystem (Rivest, Shamir, Adleman, 1977)

m Alice chooses two (big) primes p and g, and computes
N=pxaqg

m Alice randomly chooses e coprime with
o(N)=(p—1)(g— 1), and computes d s.t.
ed =1 (mod ¢(N)) [i.e. ed =1+ jop(N)]

m Alice makes NV and e public
m Bob represents a message with an integer m coprime with
m Bob computes ¢ = m® (mod N) and sends it to Alice

m Alice receives ¢ and computes c? (mod N) thus recovering m:
c? = m*? = mitieN) = p (m¢(N))J = m (mod N)
Euler Theorem (1736): gcd(m,N) =1 = m?*(V) =1 (mod N)
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Quantum Cryptography

Public Key Cryptography: RSA
The RSA cryptosystem (Rivest, Shamir, Adleman, 1977)

m Alice chooses two (big) primes p and g, and computes
N=pxaqg

m Alice randomly chooses e coprime with
o(N)=(p—1)(g— 1), and computes d s.t.
ed =1 (mod ¢(N)) [i.e. ed =1+ jop(N)]

m Alice makes NV and e public

m Bob represents a message with an integer m coprime with

m Bob computes ¢ = m® (mod N) and sends it to Alice An eavesdropper

m Alice receives ¢ and computes c (mod N) thus recovering m: haS to factorize N
cd — med — pltis(N) — ) 5 (m¢(N))J = m (mod N) In order to break
this cryptosystem.

Euler Theorem (1736): gcd(m,N) =1 = m?*(V) =1 (mod N)
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Quantum Cryptography
Public Key Cryptography: RSA

Easy example

e Choosep=3andq=11

e Computen=p*q=3*11=233

e Compute p(n)=(p-1)*(q-1)=2*10=20

e Choose e such that I <e <¢(n) and e and ¢ (n) are coprime. Lete =7

e Compute a value for d such that (d * ) % ¢(n) = 1. One solutionis d =3 [(3 * 7) % 20 = 1]
e Public key 1s (e, n) => (7, 33)

e Private key 1s (d, n) => (3, 33)

e The encryption of m = 2isc =2/ % 33 = 29

e The decryption of ¢ = 29is m = 29° % 33 = 2

CINECA ()2 hs ue



Quantum Cryptography

Public Key Cryptography: RSA

Alice

pnvate i pubhc

Plain text

Cypher text

send

Bob

publlc i pnvate

Plain text

Cypher text

Public key:
Known by all. Used by the sender to
encrypt a secret message

Private key:
Known to the owner only. Used by
the receiver to decrypt the message

In theory it is possible to
extrapolate the private key
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Quantum Cryptography

Public Key Cryptography: RSA

1E+31 Numb(_ar of
: : ’ operations 3,E+28
In order to obtain the private 1E+29
key, we need to solve a hard LE2t
: 1E+25 \
mathematical problem LEira
1E+21 Largest number ever
’ factorized: 230 digits
_ . _ 1,E+19
Facorization of integer numbers 1E+17  6,E+
N: p X q 1E+15 Length of N
50 100 150 200 250 300

Run-time best classical algorithm:
elog(N)l/ 3
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Quantum Cryptography: Shor Algorithm

A
4k} .
£ Exponential
= P g Time to factor a
& speedup 2048-digits number
Number Field Sieve .
EXP{:IQ lﬂg{:nlfaj " lﬂg{lng{:n:})zfgj -~ b||||0ns Of yearS
——
; I
|
|
|
|
Shor's Algorithm  log(n?®) :
~ seconds*;__
~ : -
0 500 1000 1500 2000
Number of bits

* Assuming we have a fault-tolerant quantum computer capable of executing Shor’s algorithm by
applying gates at the speed of current quantum computers based on superconducting circuits
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Quantum Cryptography

Quantum creates the problem but also provides the solution

Quantum Mechanics

T

Shor Quantum Quantum
Algorithm Cryptography (QKD)
| l
Breaks RSA Secure quantum
cryptograpy communication
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Quantum Key Distribution (QKD)
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Quantum Key Distribution (QKD)

Quantum key distribution is a system for ensuring secure communications. It
enables two parties to produce and share a random secret key only between
themselves which they can use to encrypt and decrypt their messages.

The security of QKD relies on the fundamentals of quantum
mechanics compared to the traditional classical protocol which
IS based on the computational hardness of certain mathematical

functions, and cannot provide any indications regarding
possible interceptions.
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Quantum Key Distribution (QKD)

Quantum key distribution is a system for ensuring secure communications. It
enables two parties to produce and share a random secret key only between
themselves which they can use to encrypt and decrypt their messages.

An important and unique property of the QKD is the ability
of the two communicating users (Alice and Bob) to detect the
presence of a third party (Eve) who tries to obtain
Information on the secret key, due to the fact that a
measurement process disturbs the quantum system.

CINECA ()2 hs ue



Quantum Key Distribution (QKD)

Quantum key distribution is a system for ensuring secure communications. It
enables two parties to produce and share a random secret key only between
themselves which they can use to encrypt and decrypt their messages.

Classical channel

Quantumchannel

Alice Bob

Eve
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Quantum Key Distribution (QKD)

1. Alice uses two random bit (a,b) In
order to preare a qubit state [ .p)

Po0) = 10),  [|Y10) = (1),  |Po1) = [+), [¥11) = [—),

Alice
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Quantum Key Distribution (QKD)

1. Alice uses two random bit (a,b) In
order to preare a qubit state [ .p)

Po0) = 10),  [|Y10) = (1),  |Po1) = [+), [¥11) = [—),

Alice

2. Alice sends the qubit |y ,},) to Bob
via a quantum channel

Wjab)

Bob

CINECA ()2 hs ue



Quantum Key Distribution (QKD)

3. Bob throws a random bit b’ to decide how to measure
the state |y,,) of the qubit that Alice transmitted

(0« Z,1 <> X)

Bob

CINECA ()2 hs ue



Quantum Key Distribution (QKD)

Bob

3. Bob throws a random bit b’ to decide how to measure

the state [y,,) of the qubit that Alice transmitted

(0« Z,1 <> X)

4. Bob saves the result of a measurement in a bit a’

!

|

0 if outcomeis +1
1 if outcomeis — 1

CINECA @
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Quantum Key Distribution (QKD)

After repeting steps 1,2,3 and 4 a number n of times,
Alice e Bob publicly share their strings beb’

Alice

CINECA ()2 hs ue



Quantum Key Distribution (QKD)

After repeting steps 1,2,3 and 4 a number n of times,
Alice e Bob publicly share their strings beb’

‘ ‘ They discard all bits of the
two strings except those
for whichb’ =b

Alice

CINECA ()2 hs ue



Quantum Key Distribution (QKD)

After repeting steps 1,2,3 and 4 a number n of times,
Alice e Bob publicly share their strings beb’

They discard all bits of the
two strings except those
for whichb’ =b

The remaining bits (asymptotically n / 2) will satisfy the
relation a’ = a and thus constitute their secret key.

CINECA ()2 hs ue



Quantum Key Distribution (QKD)

Alice basis (b) Encoding (a) q-ch Bob basis (b') Bob result Decoding (a’) public-ch
7 04+ 10) | — Z 0), Pr =1 0 OK
X +), Pr=1/2 0 -
X Y, Pr=1/2 1 i
4 1o (1) | ~ Z 1), Pr=1 1 OK
X +), Pr=1/2 0 -
X Y, Pr=1/2 1 i
X 0 |+) | ~ Z 0), Pr=1/2 0 -
4 1), Pr=1/2 1 i
X +), Pr=1 0 OK
X 1o =) | ~ 4 0), Pr=1/2 0 i
7 1), Pr=1/2 1 i
X —), Pr=1 1 OK
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Quantum Key Distribution (QKD)

Alice basis (b) Encoding (a) q-ch Bob basis (b') Bob result Decoding (a’) public-ch

7 Qo) | — Z 0), Pr =1 0 OK
— X ), Pr=1/2 0 i
X Y, Pr=1/2 1 i

Z Qe [1) | ~ 4 1), Pr=1 1 OK
— X ), Pr=1/2 0 i
X Y, Pr=1/2 1 i
X O [+) | ~ Z 0), Pr=1/2 0 -
— 4 1), Pr=1/2 1 i

X ), Pr=1 0 OK
X IR Z 0y, Pr=1/2 0 :
— 7 1), Pr=1/2 1 i

X —), Pr=1 1 OK
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Quantum Key Distribution (QKD)

Let's imagine that Eve wants to intercept the secret key.
Eve opts for an "Intercept-Resending" strategy in which she intercepts the qubit sent
by Alice and measures it. She then sends back to Bob the state she measured.

Classical channel

Quantumchannel

Alice Bob

Eve

CINECA ()2 hs ue



Quantum Key Distribution (QKD)

Alice q-ch Eve Eve result g-ch Bob Bob result Pr
00y ~ | Z. Pr=1/2 [0y, Pr=1 | ~ | Z | [0)<0, Pr=1 | 1/2
X, Pr=1/2 | [+, Pr=1/2 | - | Z | [0)<0, Pr=1/2 | 1/8

+), Pr=1/2 | ~ 4 1) <1, Pr=1/2 | 1/8

X, Pr=1/2 | |-), Pr=1/2 | ~ Z 0) <0, Pr=1/2 | 1/8

N, Pr=1/2 | - | Z |[1)< 1, Pr=1/2 | 1/8

« If Eve uses the same basis used by Alice, then she can perfectly
understand the bit encoded by Alice, which will then be the same bit
measured by Bob (if he also measures in the correct basis)

* If Eve uses a different basis from the one used by Alice, then her bit will
be random and so will the one measured by Bob.
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Quantum Key Distribution (QKD)

If Eve uses a different basis from the one used by Alice, then its bit will be
random as well as the bit measured by Bob

Eve destroys the state if she doesn’t measure in
the correct basis
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Quantum Key Distribution (QKD)

If Eve uses a different basis from that used by Alice, then its bit will be
random as well as that measured by Bob

Eve destroys the state if she doesn’t measure in
the correct basis

Alice and Bob extract
part of the secret key
Bob

and make it public

Alice
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Quantum Key Distribution (QKD)

Alice q-ch Eve Eve result g-ch Bob Bob result Pr
0<0)] ~ | Z.Pr=1/2 ] [0),Pr=1 | - | Z | [0)<0, Pr=1 | 1/2
X. Pr=1/2 | [+, Pr=1/2 | - | Z | [0)«<0, Pr=1/2 | 1/8
+), Pr=1/2 | ~ V4 1) <> 1, Pr=1/2
X, Pr=1/2 | |-), Pr—1/2 s Z 0) >0, Pr=1/2
—), Pr=1/2 | ~ Z

secret key are different,
then they can claim that
Bob Alice Eve is spying on them

a If (asymptotically) ¥ of
the bits of the public

CINECA (Q)eSnints s



Quantum Key Distribution (QKD)

OKD Experiments:

m 2015 Longest distance QKD for optical fiber (approx 300Km)
achieved by University of Geneve

m 2017 University of Waterloo achieved the QKD between a
ground transmitter and an aircraft

m 2017 University of Science and Technology of China performed
experiments at space scale

QKD Systems in the market QKD Networks

m ID Quantique (Geneva) m DARPA

m MagiQ Technologies, Inc. (New York) m SECOQC

m Quintessencelabs (Australia) m SWISS QUANTUM
m SeQureNet (Paris) m CHINESE NET

m TOKYO NET

|

Los Alamos National Lab
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Quantum Cryptography

Quantum creates the problem but also provides the solution

Quantum Mechanics

T

Shor Quantum Quantum
Algorithm Cryptography (QKD)
| l
Breaks RSA Secure quantum
cryptograpy communication
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Quantum Key Distribution (QKD)

Quantum creates the problem but also provides the solution

Quantum Mechanics

T

Shor Quantum Quantum
Algorithm Cryptography (QKD)
| |
Breaks RSA Secure quantum

cryptograpy communication

Post-Quantum Cryptography

Symmetric cryptographic algorithms and hash
functions are considered safe from attacks by
guantum computers.

« Lattice-based cryptography
 Multivariate cryptography
« Hash-based cryptography

NIST Call for standardization

CINECA ()2 hs ue


https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

Quantum Computing @ CINECA

CINECA: Italian HPC center
CINECA Quantum Computing Lab:
- Research with Universities, Industries and QC startups

- Internship programs, Courses and Conference (HPCQC) rmengoni@cineca.it

https://www.quantumcomputinglab.cineca.it

\ QUANTUM /uz

COMPUTING
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