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0. Quantum Annealing
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Quantum Annealing

Annealing in hardware. Once a native instance is formulated, it can be sent to the quantum
annealing hardware for solution. The quantum annealing algorithm used by D-Wave
incorporates the initial Hamiltonian

Initial Hamiltonian: | Hr = ZUI-X,
;

and the problem Hamiltonian

_ . z . z z
Final Hamiltonian: | 7t = Zk‘gf + Z Jijoi o; .
i

i<j

where h; and J;; are constrained to match the hardware working graph.
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Quantum Annealing

Thus D-Wave quantum annealers implement the following Hamiltonian:

H(s) = A)Hr + B(s)Hm.

Energy Functions

0.6
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D-Wave Quantum Annealer

- 2000 qubits
- 5000 qubits
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D-Wave Architecture

The building blocks of the D-wave architecture are the Chimera or Pegasus Graphs
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(c) Chimera cells. (d) Pegasus cells.
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Minor Embedding

Logical Ising (or QUBO) problem Embedded problem
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Minor-embedding a general graph G into a hardware working graph H.
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1. NP-Hard Problems

CINECA (Q)2SiTntc e



NP-Hard problems

P * Sorting
. * Multiplication

Efficiently
solvable
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NP-Hard problems

NP | < Factorization

Efficiently verifiable * Graph isomorphism
solution .

* Sorting
* Multiplication

P

Efficiently
solvable

v
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NP-Hard problems

NP- . ¢ Travelling Salesman Problem
* NxN Sudoku
complete . SAT

NP 1 —— -+ Factorization

Efficiently verifiable * Graph isomorphism
solution

* Sorting
* Multiplication

P

Efficiently
solvable

v
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NP-Hard problems

N

Optimization

NP-Hard

* Some ML problems
NP- :
* Travelling Salesman Problem
complete - NxN Sudoku
 SAT

\
NP [ —— « Factorization

Efficiently verifiable . Graph isomorphism
solution

P

Efficiently
solvable

* Sorting
Multiplication

v
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NP-Hard problems
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2. Unsupervised Learning
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Unsupervised Learning

The algorithm is provided with
an unlabelled dataset with the
goal of finding patterns and
structures without any prior
experience of the problem.

A standard examples of unsupervised learning task is clustering where

data-points in the form of multidimensional vector are assigned labels

and grouped in such a way to minimize within-group distance while
maximizing the margin between different classes.
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K-means Clustering
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K-Means Clustering

More in detail, consider an unlabelled dataset D containing M feature vectors # € R*, the k-means
algorithm aims to partition the dataset into & < M sets C = {C'y, (s, ..., C } in order to minimize the
within-cluster variance. The objective function is the following

k
argéninz > 7 - il (1.12)

where /i; 1s the centroid or mean vector calculated among those points belonging to the same class C;

1
fi; = e » & (1.13)

TeEC;
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K-Means Clustering
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K-Means Clustering

The algorithm at first randomly select k centroids and then follows an iterative procedure that alternates between two steps.

—m

* An assignment step where each vector is assigned to the

Repeated until cluster whose centroid has the least squared Euclidean

convergence | distance.

The algorithm does not guarantee a convergence to a global
optimum but towards a local minimum
Moreover the overall performance is largely affected by the
initial choice of the centroids.

From the complexity point of view, finding the optimal
solution for the k-means clustering problemis NP-hard in
the Euclidean space

=

* An updating step where it is calculated the new centroids of
— thevectorsin the new clusters.

Let’s try to formulate the
clustering problem as a
combinatorial optimization
problem that we can address
with Quantum Annealing
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Quantum Annealing for Clustering
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Quantum Annealing for Clustering

The idea is the following: consider a dataset D containing M feature vectors 7; € R” that we want

to partition into k& < M sets C = {C1, Cs, ..., Ck } in order to minimize the within-cluster variance. We
(k)

can start defining a binary variable z;

words

that 1s 1 only when the vector r; belongs to class C;, in other

(k) ) 1t r e G
T 0iff F € O,

Since every vector x; must be associated to a single class, this means that

vE;, S 2 =1

CINECA ()2 hs ue



Quantum Annealing for Clustering

(k) _ 11t r; € C; — K (k) L
T {Oiffi:}- cc;, t+ VT k=17 =1

This condition can be rephrased as an objective function as follows

2

M K
fi(z) =) ergk)—l
1 k=1
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Quantum Annealing for Clustering

Moreover, since we want the distance between vectors D; ; = |Z; — Z| to define the clusters, i.e we
want to group together vectors that are closer, it 1s necessary to add the penalty term

K
=D Diju %

k=1 i#j

)

The QUBO associated to the clustering problem is therefore

M K
= (sz,@ - 1) +ZZD
1=1 \k=1

k=1 i#j

(k)

35]%

where parameter A was inserted to modulate the strength of the first term, which represent
the hard constraint of the problem.
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Minimum Spanning Tree Clustering
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Minimum Spanning Tree Clustering

Intro to the Minimum Spanning Tree problem

Consider a weighted graph G = (V, E/,w) composed of a set V' of n vertices, a set £ of edges and a
function w : £ — R that associates a weight w,, ,» to each edge (v,v") € E.

The Minimum Spanning Tree (MST)
problem aims at finding a subgraph
T of G such that: it does not contain
cycles (i.e. T is a tree), it touches all
the n vertices of G and it minimizes
the sum overall edge weights.
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Minimum Spanning Tree Clustering

Given an unlabelled dataset D containing n feature vectors 7; € R”, the MST based clustering algo-
rithm considers the n points 7 as nodes of a complete weighted graph &, where weights w;_ ; represent
the euclidean distance between any pair of points z; and x;.

wi j = d(a, 75) (1.14)

¥

The algorithm computes the

MST of the weighted graph G.
-
If the number of clusters k is _— >
known in advance, the 2
algorithm sorts the edges of ‘
the MST in descending
order and remove the (k-1)

edges with heaviest weights
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Minimum Spanning Tree Clustering

Delta Degree Minimum Spanning is NP-hard

In general, finding the MST of a given graph is not a hard task for a classical computer. In fact, given
a graph where e 1s the number of edges and 7 is the number of vertices, the MST problem can be exactly
solved in O(elogn) time. However, with an additional constraint called A-Degree constraint (i.e. each
vertex in the MST must have degree less or equal than A), where 2 < A < n — 1, the problem becomes
NP-hard and the corresponding decision problem NP-complete [9]]. Finally, note that if the initial graph
1s complete, then a MST with A-Degree constraint 1s ensured to exist.

$

Let’s try to formulate the Delta Degree Minimum Spanning
Tree clustering problem as a combinatorial optimization
problem that we can address with Quantum Annealing
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Quantum Annealing for MST Clustering
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Quantum Annealing for MST Clustering

Consider an ordering of the vertices, i.e. a bijective map that
associates to each vertex only one indexed i € {1,2, ..., n} and vice
versa. Define the binary variables x, ; and y,; such that

1 ifl v is in position i
Xy = .
! 0 otherwise

and

1 iff p is parent of vertex in position i
Vi 0 otherwise

Because the root has no parent, y, 1 must be zero for every vertex. Moreover, since the root has been
set from the beginning, it is already known that y, o = 1 only when p is the root. Hence, we can safely
restrict the variable y,, ; to the cases where p € V' and ¢ > 3.
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Quantum Annealing for MST Clustering

Let’s now introduce the hard constraints these two variables have to satisfy in order to realize the
MST. Since we considered a total ordering of the vertices, the following two QUBO terms should be
considered:

> (i%il):i Y a1

veV\{r} \i=2 i=2 \veV\{r}

Where the first term ensures that only one 7 1s associated to every v while the second term guarantees the
converse.

Moreover, a necessary property to obtain a tree requires that each vertex has only one parent. Such
property is expressed with the QUBO constraint

T

S: Yypi_l

i=3 \peV
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Quantum Annealing for MST Clustering

Now we need to secure that, if p 1s in the parent of the vertex in position z, then p shouldn’t be at greater
or equal position. In QUBO form, such condition becomes

2. 2D Uity

peV\{r} i=3 j>i

Finally, in order to make sure that parents and children are indeed neighbours, the following term that
penalizes non-neighbours should be taken into account

2. 2. D el

PEV vgN (p),vtr i=3

Note that this term does not eive any contribution when the eraph is complete, since all vertices are
neighbours. Anyway we decided to insert this term form completeness, since it becomes relevant when
the input graph 1s not complete.
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Quantum Annealing for MST Clustering

The final QUBO form for the MST problem with A-degree constrain is

T 2 T 2
A Z (Z Ty i — 1) + A Z ( Z Ty — 1) —
=2

veV\{r} \i=2 veV\{r}

2
+A$:($:yp,1-1) +A YYDy +

i=3 \ peV peV\{r}i=3 j=i
n n A—1 2
AN D D weatpd | FAD D = D |+
pEV vgN(p),v#£r i=3 pcV \ i=3 j=1
+B ( DT S Zyp:m:iww) (7.7)
veEN (r) veV\{r} peV i=3

where the last term minimizes the sum of edge weights w.
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Quantum Annealing for MST Clustering

Delta Degree constraint

In order to realize the A-Degree constraint, a number A — 1 of binary slack variables z, ; are intro-
duced for each vertex. The QUBO term for this constrain 1s

2
n A—1
§ , § :ypai_ § :Eprj
peV i=3 j=1

Parameter Setting

As we can see from Eq. [7.7| parameter A have been introduced to define the strength of the hard con-
straints with respect to the cost term, multiplied instead by parameter B. In general, A >> B (o ensure

that the problem is well defined. In our case, the minimum value of A for which the problem is well
defined 1s given by the relation

4 > max {w, -}
B v, v’ €V '
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3. Supervised Learning
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Supervised Learning

It is given an ensemble of
labelled data points usually
called training set.

The learning algorithm has the
task to induce a classifier from
these labelled samples.

The classifier is a function that
allocate labels to inputs,
Including those that are out of the
training set which have never been
previously analyzed by the
algorithm.

=

Supervised learning

e Classification

* Regression
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Kernel methods and SVMs
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Support Vector Machine (SVM)

The task is to find a hyperplane that is the best discrimination
between two class regions and serves as a decision boundary for
future classification tasks.

e

input: M training vectors {(X,y) | X € RN, y € {—1,+1}}
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Kernel Methods

Kernel methods are classification algorithms in ML that use a kernel function K in order to map
data points, living in the input space V, to a higher dimensional feature space V', where separability
between classes of data becomes clearer. Kernel methods avoid the calculation of points in the new
coordinates but rather perform the so called kernel trick that allow to work in the feature space V'’

simply computing the kernel of pairs of data points (see. Fig[1.2).
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Graph Edit Distance
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Graph Edit Distance

The GED between two graphs is defined as

k

GED(g1. ) = min )Z c(ei)
" =1

where P(g1, &) denotes the set of edit paths transforming g1 into (a graph
isomorphic to) g» and c(e) > 0 is the cost of an edit operation e.

Consider a kernel for SVM based on the GED

K(gi.22)=F(GED(g1.2))

The problem of computing GED is NP-hard.

CINECA (Q)eSnints s



Quantum Annealing for GED
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Quantum Annealing for Graph Edit Distance

Let’s try to calculate GED as the output of a
combinatorial optimization problem that we can
address with Quantum Annealing

Given two graphs G;(Vi. E;) and Gy( V5, E>) with the same
number of nodes, we define a binary variable x, ; as follows

{1 if vertex v € V5 gets mapped to vertex i € V4
Xv,i —

0 otherwise
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Quantum Annealing for Graph Edit Distance

We are now introducing the initial Hamiltonian, i.e. the hard constraints, which must necessarily be
satisfied in order to obtain a solution. To guarantee such bijective mapping it is necessary to formulate

H 4 as follows:
HA = AZ(l — va’i)2 + AZ(l - va,i)Q

T

As said before the number of nodes of the two graphs are the same, in this case H 4 must be zero in the
optimal case. At this stage we also need a second term H g which penalize a bad mapping i.e. when two
vertices 7 and j in GGy that are connected by and edge, (i, j) € 1, are mapped into vertices « and v in
(5 which are not connected, (u,v) ¢ F5 and vice versa.

HB:B Z Z ;’l?u?iil?i,’j—l—B Z Z Ly, iy, j

1J€E1 U:UEEE 1._}'EE1 U,’U%Eg
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Quantum Annealing for Graph Edit Distance

The complete QUBO formulation is:

HQubo—AZ 1_ZT01 ‘I_Azl_zﬂ-ﬂuz
+ B Z Z Tu,ilv,j + B Z Z Ty, ilTv,j

i,j¢ E1 u,vEEy 1,j€EE1 u,ug Es

(7.13)

So if the result of Eq. |7.13]1s equal to O, then the two graphs are isomorphic and their GED is 0. If
the result 1s greater than 0, the minimum of H .., Will be also the minimum distance between the two
graphs, i.e. Hgypo Will return the GED.

Since H 4 1s a hard constraint, parameter A should be much higher than B if we want H 4 to be
surely satisfied. However, since in the D-Wave quantum annealer all the QUBO coefficients (both linear,
h,, and quadratic, .J;;) get normalized in the range [—1, 1], it is important to chose A and B in such a way
that the normalized coefficients do not become too small. For this reason, a good choice for parameters
A and B is the one where

1

min (h2,J ﬁc) > max (hB

JB
igk ijk i)

where h and .J ﬁ; are respectively the linear and quadratic coefficients appearing in H 4 while h¥ and
J ﬁc are linear and quadratic coefficients of H g.

CINECA ()2 hs ue



Try on the real D-Wave hardware

D-Wave access:

Leap In (free 1 min / month)

EMAIL ADDRESS

FASAWORD

Solver Name
Hybrid

hybrid_binary_quadratic_model_version2

hybrid_discrete_quadratic_model_version1

QPU

Advantage_system11

Dw_2000Q_6

D-Wave Software Documentation:

Status Description

Online Hybrid solver for general BQM

problems, version 2.0

Online Hybrid solver for general DQM

problems, version 1.0

Online Advantage system

Online D-Wave 2000Q lower-noise

system
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https://cloud.dwavesys.com/leap/
https://docs.ocean.dwavesys.com/en/stable/index.html

Quantum Computing @ CINECA

CINECA: Italian HPC center
CINECA Quantum Computing Lab:
- Research with Universities, Industries and QC startups

- Internship programs, Courses and Conference (HPCQC) rmengoni@cineca.it

https://www.quantumcomputinglab.cineca.it
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