Introduction to Quantum Computing Day 2 - Quantum Algorithms

Mengoni Riccardo, PhD

22 June 2021

Quantum Computing @ CINECA

CINECA: Italian HPC center
CINECA Quantum Computing Lab:

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

r.mengoni@cineca.it https://www.quantumcomputinglab.cineca.it

Recap of Quantum Computing

Vectors

Ket: $\quad|\psi\rangle=\left(\begin{array}{c}\psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{n}\end{array}\right) \quad \underset{\substack{ \\\text { Complex Number }}}{\psi_{C}}$

Scalar Product

$$
\langle\phi \mid \psi\rangle=\left(\begin{array}{llll}
\phi_{1}^{*} & \phi_{2}^{*} & \cdots & \phi_{n}^{*}
\end{array}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\vdots \\
\psi_{n}
\end{array}\right) \quad \begin{aligned}
& \langle\phi \mid \psi\rangle \in \mathbb{C} \\
& \text { Complex Number }
\end{aligned}
$$

Scalar Product

$$
\begin{gathered}
\langle\phi \mid \psi\rangle=\left(\begin{array}{llll}
\phi_{1}^{*} & \phi_{2}^{*} & \ldots & \phi_{n}^{*}
\end{array}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\vdots \\
\psi_{n}
\end{array}\right) \quad \begin{array}{c}
\langle\phi \mid \psi\rangle \in \mathbb{C} \\
\text { Complex Number }
\end{array} \\
\binom{\text { The scalar product induces a norm }}{\||\psi\rangle \|=\sqrt{\langle\psi \mid \psi\rangle}}
\end{gathered}
$$

Outer Product

$$
|\psi\rangle\langle\phi|=\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\vdots \\
\psi_{n}
\end{array}\right)\left(\begin{array}{llll}
\phi_{1}^{*} & \phi_{2}^{*} & \ldots & \phi_{n}^{*}
\end{array}\right)=\left(\begin{array}{ccccc}
\psi_{1} \phi_{1}^{*} & \psi_{1} \phi_{2}^{*} & \ldots & \psi_{1} \phi_{n}^{*} \\
\psi_{2} \phi_{1}^{*} & \psi_{2} \phi_{2}^{*} & \ldots & \psi_{2} \phi_{n}^{*} \\
\vdots & \vdots & & \vdots \\
\psi_{n} \phi_{1}^{*} & \psi_{n} \phi_{2}^{*} & \ldots & \psi_{n} \phi_{n}^{*}
\end{array}\right)
$$

Dimension $=n \times n$

Tensor Product

Tensor Product

Compact form:

$$
|\psi\rangle \otimes|\phi\rangle=|\psi\rangle|\phi\rangle=|\psi \phi\rangle
$$

1. Unit of Information

Classically

Unit of classical information is the bit

State of a bit:

$$
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}
$$

Quantumly

To a closed quantum system is associated a space of states H which is a Hilbert space. The pure state of the system is then represented by a unit norm vector on such Hilbert space.

The unit of quantum information is the quantum bit a.k.a. Qubit
State of a quit:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}
$$

Postulates of Quantum Computing (1)
Space of states: $H \simeq \mathbb{C}^{2}$
State of a quit:

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta} \\
& \alpha, \beta \in \mathbb{C} \quad|\alpha|^{2}+|\beta|^{2}=1
\end{aligned}
$$

Postulates of Quantum Computing (1)

Space of states: $H \simeq \mathbb{C}^{2}$
State of a qubit:

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta} \\
& \alpha, \beta \in \mathbb{C} \quad|\alpha|^{2}+|\beta|^{2}=1
\end{aligned}
$$

Can be parametrized as:

$$
\begin{array}{r}
|\psi\rangle=\cos \left(\frac{\theta}{2}\right)|0\rangle+e^{i \phi} \sin \left(\frac{\theta}{2}\right)|1\rangle \\
\theta \in[0, \pi] \quad \phi \in[0,2 \pi]
\end{array}
$$

2. Composite systems

Classically

State of N bits:

$$
|000 \ldots 0\rangle,|100 \ldots 0\rangle,|010 \ldots 0\rangle \ldots|111 \ldots 1\rangle
$$

Postulates of Quantum Computing (2)
Quantumly
The space of states of a composite system is the tensor product of the spaces of the subsystems

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}
$$

State of N quits:

$$
\begin{gathered}
\alpha_{1}|000 . .0\rangle+\alpha_{2}|100 . .0\rangle+\alpha_{3}|010 \ldots 0\rangle+\ldots \alpha_{n}|111 . .1\rangle \\
\alpha_{i} \in \mathbb{C} \sum_{i}\left|\alpha_{i}\right|^{2}=1
\end{gathered}
$$

Quantum Entanglement

States that can be written as tensor product

$$
|\psi\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \otimes\left|\psi_{N}\right\rangle
$$

are called factorable or product states

Quantum Entanglement

States that can NOT be written as tensor product

$$
|\psi\rangle \neq\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \otimes\left|\psi_{N}\right\rangle
$$

are called entangled states

Postulates of Quantum Computing (2)
Quantum Entangled
Bell's states

$$
\begin{array}{ll}
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) & \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) & \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{array}
$$

3. State Change

Postulates of Quantum Computing (3)

Classically: logic gates

Logic Gate	Symbol	Description	Boolean
AND		Output is at logic 1 when, and only when all its inputs are at logic 1 ,otherwise the output is at logic 0 .	$\mathrm{X}=\mathrm{A} \cdot \mathrm{B}$
OR		Output is at logic 1 when one or more are at logic 1.If all inputs are at logic 0 ,output is at logic 0 .	$X=A+B$
NAND	$0-$	Output is at logic 0 when, and only when all its inputs are at logic 1 ,otherwise the output is at logic 1	$X=\overline{A \cdot B}$
NOR		Output is at logic 0 when one or more of its inputs are at logic 1 .If all the inputs are at logic 0 , the output is at logic 1.	$X=\overline{A+B}$
XOR		Output is at logic 1 when one and Only one of its inputs is at logic 1 . Otherwise is it logic 0 .	$X=A \oplus B$
XNOR		Output is at logic 0 when one and only one of its inputs is at logic1.Otherwise it is logic 1 . Similar to XOR but inverted.	$X=A \oplus B$
NOT		Output is at logic 0 when its only input is at logic 1 , and at logic 1 when its only input is at logic 0 . That's why it is called and INVERTER	$X=\bar{A}$

Postulates of Quantum Computing (3)
Quantumly
The state change of a closed quantum system is described by a unitary operator

$$
\begin{aligned}
i \frac{d|\psi\rangle}{d t}=H|\psi\rangle \Rightarrow|\psi(t)\rangle & =e^{-i H t}|\psi(0)\rangle \\
\text { Schrodinger Equation } & U=e^{-i H t}
\end{aligned}
$$

Quantumly: Quantum Gates

4. Measurement

Classically

Measuring returns the state of a bit with certainty

Measurements do not affect the state of a bit

Quantumly

Measuring returns the bit state with some probability

Outcome

$$
\left.\psi\rangle=\alpha|0\rangle+\beta|1\rangle<\begin{array}{l}
\text { Measure }
\end{array} 0\right\rangle \text { with } P_{r}=|\alpha|^{2},|1\rangle \text { with } P_{r}=|\beta|^{2}
$$

Measurement affects the state of a qubit

Quantumly

- To any observable physical quantity is associated an hermitian operator O

$$
O\left|\sigma_{i}\right\rangle=\sigma_{i}\left|\sigma_{i}\right\rangle
$$

- A measurement outcomes are the possibile eigenvalues $\left\{o_{i}\right\}$.
- The probability of obtaining o_{i} as a result of the measurement is

$$
P_{r}\left(\sigma_{i}\right)=\left|\left\langle\psi \mid \sigma_{i}\right\rangle\right|^{2}
$$

- The effect of the measure is to change the state $|\psi\rangle$ into the eigenvector of O

$$
|\psi\rangle \rightarrow\left|\sigma_{i}\right\rangle
$$

Quantum Algorithms

Quantum Algorithm = Quantum Circuit

A quantum circuit with n input qubits and n output qubits is defined by a unitary transformation

$$
U \in U\left(2^{n}\right)
$$

Quantum Algorithms

CINECA

Quantum Algorithms: Gates

Quantum Algorithms: Gates
Single Qubit Gates
Generic single quit rotation:

$$
R_{\vec{n}}(\theta)=\cos \left(\frac{\theta}{2}\right) I-i \sin \left(\frac{\theta}{2}\right) \vec{n} \cdot \vec{\sigma}
$$

Pauli matrices:

$$
\begin{aligned}
\sigma_{x}=X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=Y & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\text { Identity: } I & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Quantum Algorithms: Gates
Single Qubit Gates: Hadamard

$$
\begin{aligned}
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad H=-H \\
& H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|+\rangle \\
& H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rangle
\end{aligned}
$$

Single Quit Gates: Phase

$$
\begin{array}{ll}
U_{\phi}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right) & U_{\phi}|0\rangle=|0\rangle \\
U_{\phi}|1\rangle=e^{i \phi}|1\rangle
\end{array}
$$

Quantum Algorithms: Gates
Two Qubit Gates: SWAP

$$
\begin{gathered}
U_{\text {SWAP }}\left|z_{1}\right\rangle\left|z_{2}\right\rangle=\left|z_{2}\right\rangle\left|z_{1}\right\rangle \quad z_{1}, z_{2} \in\{0,1\} \\
U_{\text {SWAP }}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { SWAP }=\longrightarrow \longrightarrow
\end{gathered}
$$

Quantum Algorithms: Gates
Two Qubit Gates: Control Not

$$
\begin{aligned}
& U_{C x}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& U_{c x}=\square \\
& U_{c x}\left|z_{1}\right\rangle\left|z_{2}\right\rangle=\left|z_{1}\right\rangle X^{z_{1}}\left|z_{2}\right\rangle \\
& \left.U_{c x} \mid 00\right)=(00) \\
& U_{c x}|10\rangle=|11\rangle \\
& U_{c x}|01\rangle=|01\rangle \\
& U_{c x}|11\rangle=|10\rangle
\end{aligned}
$$

Two Qubit Gates: Control Unitary

$$
\begin{gather*}
C U\left|z_{1}\right\rangle\left|z_{2}\right\rangle=\left|z_{1}\right\rangle U^{z_{1}}\left|z_{2}\right\rangle \\
\text { Control Phase } \\
\left(U_{\phi} \mid z_{1}\right)\left|z_{2}\right\rangle=\left|z_{1}\right\rangle U_{\phi}^{z_{1}}\left|z_{2}\right\rangle \\
\left.C U_{\phi}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{+}
\end{array}\right) \quad C U_{\phi}=\right]_{\phi}^{0} \tag{0}
\end{gather*}
$$

Quantum Algorithms: Gates
Three Qubit Gates: Toffoli

$$
U_{C_{2} x}\left|z_{1} z_{2} z_{3}\right\rangle=\left|z_{1} z_{2}\right\rangle x^{z_{1} z_{2}}\left|z_{3}\right\rangle
$$

Quantum Algorithms: Universality

Universal set of Quantum Gates

We can exactly build any unitary $U \in U\left(2^{n}\right)$ on n qubits by means of single qubit gates and Control-Not

$$
G_{\text {ex }}=\left\{U \in U(2) ; \quad U_{c x}\right\}
$$

Universal set of Quantum Gates

We can exactly build any unitary $U \in U\left(2^{n}\right)$ on n qubits by means of single qubit gates and Control-Not

$$
\begin{gathered}
G_{e x}=\left\{U \in U(2) ; \quad U_{c x}\right\} \\
R_{\vec{n}}(\theta)=\cos \left(\frac{\theta}{2}\right) I-i \sin \left(\frac{\theta}{2}\right) \vec{n} \cdot \vec{\sigma} \quad U_{c x}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Universal set of Quantum Gates

Given $U, U^{\prime} \in U\left(2^{n}\right), U^{\prime}$ approximates U within

$$
\varepsilon(\varepsilon>0) \text { if } d\left(U, U^{\prime}\right)<\varepsilon
$$

Universal set of Quantum Gates

Given $U, U^{\prime} \in U\left(2^{n}\right), U^{\prime}$ approximates U within $\varepsilon \quad(\varepsilon>0)$ if $\quad d\left(U, U^{\prime}\right)<\varepsilon$
where

$$
\begin{gathered}
d\left(U, U^{\prime}\right)=\max _{|\psi\rangle} \|\left(U-U^{\prime}\right)|\psi\rangle \| \\
\text { and } \||\psi\rangle \|=\sqrt{\langle\psi \mid \psi\rangle}
\end{gathered}
$$

Quantum Algorithms: Universality
Universal set of Quantum Gates
We can approximate any unitary $U \in U\left(2^{n}\right)$ on n quits by means of the following gates

$$
\begin{gathered}
\{H, S, T, U c x\} \\
H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad S=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i+/ 4}
\end{array}\right)
\end{gathered}
$$

Quantum Algorithms: basics

Multiple Hadamard gates

10) \sqrt{H}
|0)
10)

Quantum Algorithms: basics
Single Qubit Gates: Hadamard

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad H=-H \\
H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|+\rangle \\
H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rangle
\end{gathered}
$$

Multiple Hadamard gates

$$
\begin{aligned}
& \text { Ht } \Rightarrow H=\frac{1}{\sqrt{2}}(|0\rangle\langle 0|+|0\rangle\langle 1|+|1\rangle\langle 0|-|1\rangle\langle 1) \\
& \rightarrow H^{\otimes N}=\frac{1}{\sqrt{2^{N}}} \sum_{x, s e_{0}, y^{(N}}(-1)^{x \cdot y}|x\rangle\langle y|
\end{aligned}
$$

Multiple Hadamard gates

$$
\begin{aligned}
& +H^{\circ N}-
\end{aligned}
$$

Multiple Hadamard gates

$$
\mid 0)^{\otimes N} \xrightarrow{H^{\otimes N}} \frac{1}{\sqrt{2^{N}}} \sum_{x_{i, t \in}\left(0,0 \|^{\prime}\right.}(-1)^{x \cdot y}|x\rangle \underbrace{\langle y \mid 0\rangle}_{\left.\delta_{0 y}\right]}=
$$

Multiple Hadamard gates

$$
\begin{aligned}
& \rightarrow \mathrm{H}^{0 N} \\
& |0\rangle^{\otimes N} \xrightarrow{H^{8 N}} \frac{1}{\sqrt{2^{N}}} \sum_{x_{1}\left(\{-0,0)^{N}\right.}(-1)^{x \cdot y}|x\rangle \underbrace{\langle y \mid 0\rangle}_{\delta_{0 y}}= \\
& =\frac{1}{\sqrt{2^{N}}} \sum_{x \in\left\{i, i, \psi^{\psi}\right.}|x\rangle \quad\left[\begin{array}{c}
\text { Kronecker delta } \\
\delta_{i, j} \text { def }
\end{array}\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \\
0
\end{array}\right)\right.
\end{aligned}
$$

Quantum Algorithms: basics
Function evaluation
Given a function $f:\{0,1\}^{N} \rightarrow\{0,1\}^{\mu}$, an algorithm to evaluate such function is given by the unitary \cup_{f}

$$
\begin{aligned}
& |x\rangle|y\rangle \xrightarrow{U_{f}}|x\rangle|y \oplus f(x)\rangle \\
& \text { where } x \in\{0,1\}^{N} \quad y \in\{0,1\}^{M}
\end{aligned}
$$

Deutsch Jozsa Algorithm

Deutsch Jozsa Algorithm
D-J Problem
Consider a function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ with the premise that it is either constant (returns 0 on all inputs or 1 on all inputs) or balanced (returns $\mathbf{1}$ for half of the inputs and 0 for the other half).

$$
\begin{aligned}
& A_{0}=\left\{x \in\{0,1\}^{N} \mid f(x)=0\right\} \\
& A_{1}=\left\{x \in\{0,1\}^{N} \mid f(x)=1\right\}
\end{aligned} \Rightarrow\left\{\begin{array}{l}
\left|A_{0}\right|=2^{N} \text { or }\left|A_{1}\right|=2^{N}, \text { constant } \\
\left|A_{0}\right|=\left|A_{1}\right|=2^{N-1}, \text { balanced }
\end{array}\right.
$$

How many evaluations («queries») of the function are needed to determine with certainty if such function is balanced or constant?

How many evaluations («queries») of the function are needed to determine with certainty if such function is balanced or constant?

Classically

Since the possible input strings are 2^{N}, we need to check on average (half +1) strings, i.e. $2^{N-1}+1$ strings

$$
\text { Classical Query Complexity } \sim 2^{N-1}+1
$$

Deutsch Jozsa Algorithm
Quantum Solution

$$
\left[f:\{0,1\}^{N} \rightarrow\{0,1\} \text { and }|x\rangle|y\rangle \xrightarrow{u_{f}}|x\rangle|y \oplus f(x)\rangle\right]
$$

Deutsch Jozsa Algorithm

Deutsch Jozsa Algorithm

Deutsch Jozsa Algorithm

Deutsch Jozsa Algorithm

Step by step analysis

$$
\begin{aligned}
& |0\rangle^{\otimes N}|1\rangle \xrightarrow{H^{\otimes N} H} H^{\otimes N}|0\rangle^{\otimes N} H|1\rangle=\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
& \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \xrightarrow{U_{8}}
\end{aligned}
$$

Deutsch Jozsa Algorithm

Step by step analysis

$$
\begin{array}{r}
|0\rangle^{\otimes N}|1\rangle \xrightarrow{H^{\otimes N} H} H^{\otimes N}|0\rangle^{\otimes N} H|1\rangle=\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \xrightarrow{U_{8}} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle \frac{|0 \oplus g(x)\rangle}{\sqrt{2}}-\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle \frac{|1 \oplus f(x)\rangle}{\sqrt{2}}=
\end{array}
$$

Deutsch Jozsa Algorithm
\square Step by step analysis

$$
\begin{gathered}
|0\rangle^{\otimes N}|1\rangle \xrightarrow{H^{\otimes N} H} H^{\otimes N}|0\rangle^{\otimes N} H|1\rangle=\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \xrightarrow{U_{8}} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle \frac{|0 \oplus f(x)\rangle}{\sqrt{2}}-\frac{1}{\sqrt{2^{N}}} \sum_{x} \frac{|x\rangle}{\frac{|1 \oplus f(x)\rangle}{\sqrt{2}}=} \\
=\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|f(x)\rangle-|1 \oplus f(x)\rangle}{\sqrt{2}}\right)
\end{gathered}
$$

Deutsch Jozsa Algorithm

Step by step analysis

$$
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|g(x)\rangle-|1 \oplus f(x)\rangle}{\sqrt{2}}\right)
$$

Deutsch Jozsa Algorithm

Step by step analysis

$$
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|f(x)\rangle-|1 \oplus f(x)\rangle}{\sqrt{2}}\right) \quad\left\{f(x) \in\{0,1\} \rightarrow\left\{\begin{array}{l}
f(x)=0 \frac{1}{\frac{(0)-11)}{\sqrt{2}}} \\
g(x)=1 \frac{\frac{11}{1 /-10)}}{\frac{\sqrt{2}}{1}}
\end{array}\right\}\right.
$$

Deutsch Jozsa Algorithm
\square Step by step analysis

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle \underbrace{\left(\frac{|f(x)\rangle-|1 \oplus f(x)\rangle}{\sqrt{2}}\right)} \quad f(x) \in\{0,1\} \rightarrow\left\{\begin{array}{l}
\left.f(x)=0 \begin{array}{c}
\frac{|0\rangle-|1\rangle}{\sqrt{2}} \\
f(x)=1 \\
\frac{|1\rangle-10\rangle}{\sqrt{2}}
\end{array}\right\}
\end{array}\right. \\
& \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|f(x)\rangle-|1 \oplus f(x)\rangle}{\sqrt{2}}\right)=\frac{1}{\sqrt{2^{N}}} \sum_{x}(-1)^{f(x)}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

Deutsch Jozsa Algorithm

$$
\frac{1}{\sqrt{2^{N}}} \sum_{x}(-1)^{g(x)}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

Deutsch Jozsa Algorithm

$\frac{1}{\sqrt{2^{N}}} \sum_{x}(-1)^{f(x)}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$

Deutsch Jozsa Algorithm

Deutsch Jozsa Algorithm

Deutsch Jozsa Algorithm

$$
\begin{aligned}
& \text { Step by step analysis } \\
& \text { H40 }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2^{N}} \sum_{x, y}(-1)^{y \cdot x \oplus f(x)}|y\rangle
\end{aligned}
$$

Deutsch Jozsa Algorithm

Step by step analysis

$$
\begin{aligned}
& =\frac{1}{2^{N}} \sum_{x, y}(-1)^{y \cdot x \cdot x g(x)}|y\rangle=\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \operatorname{xg}(x)}\right]|y\rangle
\end{aligned}
$$

Deutsch Jozsa Algorithm

$$
\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \theta g(x)}\right]|y\rangle
$$

Deutsch Jozsa Algorithm

$$
\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \theta g(x)}\right]|y\rangle \Rightarrow \text { Outcome } y \in\{0,1\}^{N} \text { with } \operatorname{Pr}(y)=\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \theta} \theta^{(x)}\right]^{2}
$$

Step by step analysis

$$
\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x g^{(x)}}\right]|y\rangle \Rightarrow \text { outcome } y \in\{0,1\}^{N} \text { with } P_{r}(y)=\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \cdot g(x)}\right]^{2}
$$

f constant
(returns 0 on all inputs or 1 on all inputs)

Deutsch Jozsa Algorithm

Step by step analysis

$$
\begin{aligned}
& \sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \otimes g(x)}\right]|y\rangle \Rightarrow \text { Outcome } y \in\{0,1\}^{N} \text { with } \operatorname{Pr}(y)=\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \theta g(x)}\right]^{2} \\
& f \text { constant } \Rightarrow y=(0,0,0 \ldots 0) \quad \operatorname{Pr}(y)=\left[\frac{1}{2^{N}} \sum_{x}(-1)^{j(x)}\right]^{2}=1 \\
& \begin{array}{c}
\text { (returns } 0 \text { on all inputs } \\
\text { or } 1 \text { on all inputs) }
\end{array}
\end{aligned}
$$

Step by step analysis

$$
\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x g(x)}\right]|y\rangle \Rightarrow \text { outcome } y \in\{0,1\}^{N} \text { with } P_{r}(y)=\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \cdot g(x)}\right]^{2}
$$

f balanced
(returns 1 for half of the inputs and 0 for the other half)

Deutsch Jozsa Algorithm

Step by step analysis

$$
\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \oplus f(x)}\right]|y\rangle \Rightarrow \text { Outcome } y \in\{0,1\}^{N} \text { with } P_{r}(y)=\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \oplus f(x)}\right]^{2}
$$

$$
f \text { balanced } \Rightarrow y=(0,0,0 . .0) P_{\pi}(y)=\left[\frac{1}{2^{N}} \sum_{x}(-1)^{f(x)}\right]^{2}=0
$$

(returns 1 for half of the inputs and 0 for the other half)

How many evaluations («queries») of the function are needed to determine with certainty if the function is balanced or constant?

How many evaluations («queries») of the function are needed to determine with certainty if the function is balanced or constant?

Quantum Query Complexity = 1

(Classical Query Complexity $\sim 2^{N-1}+1$)

Bernstein Vazirani Algorithm

B-V Problem

Consider a function $\quad f:\{0,1\}^{N} \rightarrow\{0,1\}$ such that

$$
f(x)=w \cdot x=\left(w_{1} w_{2} \ldots w_{N}\right) \cdot\left(x_{1}, x_{2} \ldots x_{N}\right)
$$

The task is to find the string w

Classical Solution

$$
\left.\begin{array}{c}
f(x)=w \cdot x=\left(\begin{array}{l}
w_{1}, w_{2} \ldots w_{N}
\end{array}\right) \cdot\left(x_{1} x_{2} \ldots x_{N}\right) \\
\left(w_{1} w_{2} \ldots w_{N}\right) \cdot\left(\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right) \\
\left(\begin{array}{llll}
w_{1} & w_{2} & \ldots & w_{N}
\end{array}\right) \cdot\left(\begin{array}{llll}
0 & 1 & 0 & \ldots
\end{array}\right) \\
\ldots \\
\left(w_{1}\right. \\
w_{2}
\end{array} \ldots . w_{N}\right) \cdot\left(\begin{array}{lllll}
0 & 0 & 0 & \ldots & 1
\end{array}\right) \quad \begin{gathered}
\text { Classically we } \\
\text { need } N \text { evaluations } \\
\text { of the function to } \\
\text { recover } w
\end{gathered}
$$

Bernstein Vazirani Algorithm
Quantum Solution (same circuit)

$$
\left[f:\{0,1\}^{N} \rightarrow\{0,1\} \text { and }|x\rangle|y\rangle \xrightarrow{u_{f}}|x\rangle|y \oplus f(x)\rangle\right]
$$

Bernstein Vazirani Algorithm

Bernstein Vazirani Algorithm

Bernstein Vazirani Algorithm

Step by step analysis

$$
\begin{gathered}
|0\rangle^{\otimes N}|1\rangle \xrightarrow{H^{N N} H} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \xrightarrow{V_{f}} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|w \cdot x\rangle-|1 \oplus \omega \cdot x\rangle}{\sqrt{2}}\right)
\end{gathered}
$$

Bernstein Vazirani Algorithm

Step by step analysis

$$
\begin{gathered}
|0\rangle^{\otimes N}|1\rangle \xrightarrow[D]{H^{\Delta N} H} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \xrightarrow{U_{f}} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle\left(\frac{|\omega \cdot x\rangle-|10 \omega \cdot x\rangle}{\sqrt{2}}\right) \\
=\frac{1}{\sqrt{2^{N}}} \sum_{x}(-1)^{\omega \cdot x}|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{gathered}
$$

Bernstein Vazirani Algorithm

Bernstein Vazirani Algorithm

Bernstein Vazirani Algorithm

Step by step analysis

$$
\begin{gathered}
\frac{1}{\sqrt{2^{N}}} \sum_{x}(-1)^{\omega \cdot x}|x\rangle \frac{|x\rangle-1 \cdot 1)}{\sqrt{2}} \xrightarrow{H^{\otimes N}} \frac{1}{\sqrt{2^{N}}} \sum_{y, z}(-1)^{y \cdot z}|y\rangle\langle z| \\
\frac{1}{\sqrt{2^{N}}} \sum_{x}(-1)^{\omega \cdot x}|x\rangle= \\
=\frac{1}{2^{N}} \sum_{y, x}(-1)^{y \cdot x \oplus w \cdot x}|y\rangle=\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x} \omega \omega \cdot x\right]|y\rangle
\end{gathered}
$$

Bernstein Vazirani Algorithm

Bernstein Vazirani Algorithm

Step by step analysis

$$
\begin{array}{r}
\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{4 \cdot x \oplus \omega \cdot x}\right]|y\rangle \Rightarrow \text { Outcome }|y\rangle=|\omega\rangle \text { with probability } \\
P_{r}(\omega)=\left(\frac{1}{2^{N}} \sum_{x}(-1)^{(\omega ⿴ 囗 \omega) x}\right)^{2}=1
\end{array}
$$

$$
\begin{array}{r}
\sum_{y}\left[\frac{1}{2^{N}} \sum_{x}(-1)^{y \cdot x \oplus \omega \cdot x}\right]|y\rangle \Rightarrow \text { Outcome }|y\rangle=|w\rangle \text { with probability } \\
\operatorname{Pr}(\omega)=\left(\frac{1}{2^{N}} \sum_{x}(-1)^{(\omega \oplus \omega) x}\right)^{2}=1
\end{array}
$$

Quantumly we need 1 evaluation of the function to recover w (classically it was N)

Simon Algorithm

Simon Problem
Consider a function $f:\{0,1\}^{N} \longrightarrow\{0,1\}^{N}$ such that

$$
\exists p \in\{0,1\}^{N} \Rightarrow f(x \oplus p)=f(x) \quad \forall x \in\{0,1\}^{N}
$$

The task is to find the string p

Simon Problem

x	$f(x)$
000	101
001	010
010	000
011	110
100	000
101	110
110	101
111	010

$$
p=?
$$

Simon Problem

x	$f(x)$
000	101
001	010
010	000
011	110
100	000
101	110
110	101
111	010

$$
p=110
$$

Classical Solution

Consider Mstrings $x^{(1)}, x^{(2)} \ldots x^{(M)}$ with $x^{(\bar{\lambda})} \in\{0,1\}^{N}$ and check if

$$
f\left(x^{(i)}\right)=f\left(x^{(\mathcal{T})}\right) \text {, if so } \quad x^{(i)}=x^{(J)} \oplus p \rightarrow p=x^{(i)} \oplus x^{(J)}
$$

The total number of checks using M strings is

$$
\frac{M(M-1)}{2}
$$

Classical Solution

The probability of finding p using M strings is hence

$$
\operatorname{Pr}(p)=\frac{M(M-1)}{2} / 2^{N}
$$

If we want at least $P_{\pi}(P)>\frac{1}{2}$ this means that

Quantum Solution (not the same circuit)

$$
\left[f:\{0,1\}^{N} \rightarrow\{0,1\} \text { and }|x\rangle|y\rangle \xrightarrow{u_{f}}|x\rangle|y \oplus f(x)\rangle\right]
$$

Simon Algorithm

$$
\left.\left|0^{\circ N}\right| 0\right\rangle^{8 N}
$$

Simon Algorithm

$$
\begin{aligned}
& 100^{\circ} \\
& |0\rangle^{\infty N}|0\rangle^{\otimes N} \xrightarrow{H^{\otimes N}} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle|0\rangle^{8 N}
\end{aligned}
$$ Step by step analysis

$$
\begin{gathered}
|0\rangle^{\Phi N}|0\rangle^{8 N} \xrightarrow{H^{\Phi N}} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x||0\rangle^{\Phi N} \\
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle|0\rangle^{\Phi N} \xrightarrow{U_{8}} \frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle|f(x)\rangle
\end{gathered}
$$

Simon Algorithm

Step by step analysis

$$
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle|f(x)\rangle
$$

Simon Algorithm

Step by step analysis

$$
\frac{1}{\sqrt{2^{N}}} \sum_{x}|x\rangle|f(x)\rangle \quad \text { and measure the second register }
$$

Suppose we measure $|f(\tilde{x})\rangle$, the state after the measurement is

$$
\frac{1}{\sqrt{2}}(|\tilde{x}\rangle+|\tilde{x} \oplus p\rangle)|f(\tilde{x})\rangle
$$

Simon Algorithm

Step by step analysis

$$
\frac{1}{\sqrt{2}}(|\bar{x}\rangle+|\bar{x} \oplus p\rangle)|8(\bar{x})\rangle
$$

Simon Algorithm

Step by step analysis

$$
\frac{1}{\sqrt{2}}(|\tilde{x}\rangle+|\tilde{x} \oplus p\rangle)|z(\bar{x})\rangle \xrightarrow{H^{\oplus N}} \frac{1}{\sqrt{2^{N}}} \sum_{y, z}(-1)^{y \cdot z}|y\rangle\langle z|\left(\frac{|\tilde{x}\rangle+|\tilde{x} \oplus p\rangle}{\sqrt{2}}\right)
$$

Simon Algorithm

Step by step analysis

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|\tilde{x}\rangle+|\tilde{x} \oplus p\rangle)|z(\tilde{x})\rangle \xrightarrow{H^{\otimes N}} \frac{1}{\sqrt{2^{N}}} \sum_{y, z}(-1)^{4 \cdot z}|y\rangle\langle z|\left(\frac{\mid \tilde{x})+|\tilde{x} \oplus p\rangle}{\sqrt{2}}\right) \\
& =\sum_{y} \frac{1}{\sqrt{2^{N+t}}}\left[(-1)^{y \cdot \tilde{x}}+(-1)^{y \cdot(x \oplus p)}\right]|y\rangle
\end{aligned}
$$

Simon Algorithm

Step by step analysis

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}(|\tilde{x}\rangle+|\tilde{x} \oplus p\rangle)|z(\tilde{x})\rangle \xrightarrow{H^{\otimes N}} \frac{1}{\sqrt{2^{N}}} \sum_{y, z}(-1)^{4 \cdot z}|y\rangle\langle z|\left(\frac{|\tilde{x}\rangle+|\tilde{x} \oplus p\rangle}{\sqrt{2}}\right) \\
& \left.=\sum_{y} \frac{1}{\sqrt{2^{N+1}}}\left[(-1)^{y \cdot \tilde{x}}+(-1)^{y \cdot(x} \oplus p\right)\right]|y\rangle \Rightarrow P_{r}(y)=\frac{1}{2^{N+1}}\left[(-1)^{y \cdot \tilde{x}}+(-1)^{y \cdot(\tilde{x} \oplus p)}\right]^{2}
\end{aligned}
$$

Simon Algorithm

Simon Algorithm

Step by step analysis
If $p \cdot y=1$ we get

$$
P_{r}(y)=\frac{1}{2^{N+1}}\left[(-1)^{y \cdot \tilde{x}}+(-1)^{y \cdot(\vec{x} \cdot p)}\right]^{2} \Rightarrow P_{r}(y)=\frac{1}{2^{n+1}}\left[(-1)^{y \cdot \tilde{x}}-(-1)^{y \cdot \tilde{x}}\right]^{2}=0
$$

Simon Algorithm

$$
\operatorname{Pr}(y)=\frac{1}{2^{1+1}}\left[(-1)^{y \cdot \vec{x}}+(-1)^{y \cdot(\vec{x} P P)}\right]^{2} \Rightarrow
$$

If $p \cdot y=1$ we get

$$
\operatorname{Pr}(y)=\frac{1}{2^{N+1}}\left[(-1)^{y \cdot \tilde{x}}-(-1)^{y \cdot \tilde{x}}\right]^{2}=0
$$

We always find a string s.t.

$$
p \cdot y=0
$$

Simon Algorithm

Step by step analysis
If $p \cdot y=1$ we get

$$
\operatorname{Pr}(y)=\frac{1}{2^{1+1}}\left[(-1)^{y \cdot \vec{x}}+(-1)^{y \cdot(\vec{x} P)}\right]^{2} \Rightarrow
$$

$$
P_{r}(y)=\frac{1}{2^{N+1}}\left[(-1)^{y \cdot \tilde{x}}-(-1)^{y \cdot \tilde{x}}\right]^{2}=0
$$

To recover p
we need to
solve this
linear system $\left\{\begin{array}{c}p \cdot y^{(1)}=0 \\ p \cdot y^{(2)}=0 \\ \vdots \\ p \cdot y^{(N)}=0\end{array}\right.$

We always find a string s.t.

$$
p \cdot y=0
$$

Simon Algorithm
Step by step analysis

$$
\left\{\begin{array}{l}
p \cdot y^{(1)}=0 \\
p \cdot y^{(2)}=0 \\
\vdots \\
p \cdot y^{(N)}=0
\end{array} \Rightarrow \begin{array}{l}
\text { The probability of having } y^{(1)} y^{(2)} \ldots y^{(m)} \text { linearly } \\
\text { independent is: } \operatorname{pr}(L . i .)=1-\frac{2^{m}}{2^{N}} \text { with } m \angle N \\
\end{array}\right.
$$

Step by step analysis

$$
\begin{cases}p \cdot y^{(1)}=0 \Rightarrow & \begin{array}{l}
\text { The probability of having } y^{(1)} y^{(2)} \ldots y^{(m)} \text { linearly } \\
p \cdot y^{(2)}=0 \\
\text { independent is: } \operatorname{pre}(L . i .)=1-\frac{2^{m}}{2^{N}}
\end{array} \\
\vdots \\
p \cdot y^{(N)}=0 & \begin{array}{l}
\text { In order to be sure to find a Li. set, we have to repeat the } \\
\text { algorithm a number of times equal to }
\end{array} \\
1<\frac{1}{1-\frac{2^{m}}{2^{N}}} \leqslant 2\end{cases}
$$

Step by step analysis

Quantum Fourier Transform

Quantum Fourier Transform
Discrete Fourier Transform
Given a function $f: G \rightarrow \mathbb{C}$, the DFT is defined as
where $X_{K}\left(y_{J}\right)=e^{2 \pi i \frac{k J}{N}}$

Quantum Fourier Transform
Given a basis state $\left|\delta_{J}\right\rangle$, the QFT is defined as

$$
\left|g_{J}\right\rangle \xrightarrow{\text { aFT }} \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \chi_{k}\left(g_{J}\right)\left|g_{k}\right\rangle
$$

where $X_{k}\left(g_{J}\right)=e^{2 \pi i \frac{k J}{N}}$

Quantum Fourier Transform
Quantum Fourier Transform
Given a state $|\psi\rangle=\sum_{J=0}^{N-1} f\left(g_{J}\right)\left|g_{J}\right\rangle$, the QFT is defined as

$$
|\psi\rangle=\sum_{J=0}^{N-1} f\left(g_{J}\right)\left|g_{J}\right\rangle \stackrel{\text { apT }}{D} \sum_{J=0}^{N-1} f\left(g_{J}\right) \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x_{k}\left(g_{J}\right)\left|g_{k}\right\rangle
$$

where $X_{k}\left(g_{J}\right)=e^{2 \pi i \frac{k J}{N}}$

Quantum Fourier Transform

Suppose $J \in\left\{0 \ldots 2^{N}-1\right\}$ i.e. the dimension of the space is 2^{N}
The QFT in this case becomes

$$
|J\rangle \xrightarrow{\text { QFT }} \frac{1}{\sqrt{2^{N}}} \sum_{K=0}^{2^{N}-1} e^{2 \pi i \frac{k J}{2^{N}}}|K\rangle
$$

Is it possible to realize such transformation efficiently on a Quantum Computer?

Quantum Fourier Transform
QFT Circuit
It is possible to rewrite the previus equation as follows

$$
|J\rangle \xrightarrow{Q F T} \frac{1}{\sqrt{2^{N}}} \sum_{K=0}^{2^{N}-1} e^{2 \pi i \frac{k J}{2^{N}}}|k\rangle=\frac{1}{\sqrt{2^{N}}} \bigotimes_{L=1}^{N}\left(|0\rangle+e^{\frac{2 \pi i J}{2^{4}}}|1\rangle\right)
$$

Quantum Fourier Transform
QFT Circuit
It is possible to rewrite the previus equation as follows

$$
\begin{aligned}
& |J\rangle \xrightarrow{\text { QT }} \frac{1}{\sqrt{2^{N}}} \sum_{K=0}^{2^{N}-1} e^{2 \pi i \frac{K J}{2^{N}}}|K\rangle=\frac{1}{\sqrt{2^{N}}} \bigotimes_{L=1}^{N}\left(|0\rangle+e^{\frac{2 \pi i J}{2^{L}}}|1\rangle\right)
\end{aligned}
$$

Quantum Fourier Transform
QFT Circuit Proof

$$
\begin{aligned}
& {\left[J \in\left\{0,1 \ldots 2^{N-1}\right\} \rightarrow J=\sum_{L=1}^{N} J_{L} 2^{N-L}, K \in\left\{0,1 \ldots 2^{N-1}\right\} \rightarrow K=\sum_{L=1}^{N} K_{L} 2^{N-L}\right]} \\
& |J\rangle \xrightarrow{Q F T} \frac{1}{\sqrt{2^{N}}} \sum_{K=0}^{2^{N}-1} e^{2 \pi i \frac{(K) J}{2^{N}}}|K\rangle=\frac{1}{\sqrt{2^{N}}} \sum_{K_{1}=0}^{1} \ldots \sum_{K_{N}=0}^{1} e^{2 \pi i J\left(\sum_{L_{1}=1}^{N}\right) K_{L} \frac{2^{N-L}}{2^{N}}\left|k_{1} K_{2} \ldots K_{N}\right\rangle=} \\
& =\frac{1}{\sqrt{2^{N}}} \sum_{K_{i}=0}^{1} \cdots \sum_{K_{N}=0}^{1}\left(\bigotimes_{L=1}^{N} e^{2 \pi i J \frac{K_{L}}{2^{L}}}\left|K_{L}\right\rangle=\frac{1}{\sqrt{2^{N}}} \bigotimes_{L=1}^{N} \sum_{K_{L}=0}^{1} e^{2 \pi i J \frac{K_{L}}{2^{L}}}\left|K_{L}\right\rangle=\right. \\
& =\frac{1}{\sqrt{2^{N}}} \bigotimes_{L=1}^{N}\left(|0\rangle+e^{\frac{2 \pi i J}{2^{L}}}|1\rangle\right)
\end{aligned}
$$

Quantum Fourier Transform

Quantum Phase Estimation

QPE problem

Given a Unitary U and a quantum state $|\psi\rangle$ such that

$$
U|\psi\rangle=e^{2 \pi i \theta}|\psi\rangle
$$

The task is to estimate θ

QPE circuit

CINECA

Quantum Phase Estimation

QPE circuit analysis

$\left|\psi_{0}\right\rangle=|0\rangle^{\otimes N}|\psi\rangle$

Quantum Phase Estimation

QPE circuit analysis

$\left|\psi_{0}\right\rangle=|0\rangle^{\otimes N}|\psi\rangle \longrightarrow\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{N}}}(|0\rangle+\mid 1)^{\otimes N}|\psi\rangle$

Quantum Phase Estimation

QPE circuit analysis

$$
\begin{aligned}
&\left|\psi_{0}\right\rangle=|0\rangle^{\otimes N}|\psi\rangle \longrightarrow\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{N}}}(|0\rangle+|1\rangle)^{\otimes N}|\psi\rangle \\
& \vdots \\
&\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2^{N}}} \sum_{k=0}^{2^{N}-1} e^{2 \pi i k \theta}|k\rangle|\psi\rangle
\end{aligned}
$$

Quantum Phase Estimation

QPE circuit analysis

$$
\begin{gathered}
\left|\psi_{0}\right\rangle=|0\rangle^{\otimes N}|\psi\rangle \longrightarrow\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{N}}}(|0\rangle+\mid 1)^{8 N}|\psi\rangle \\
\downarrow\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2^{N}}} \sum_{k=0}^{2^{N}-1} e^{2 \pi i k \theta}|k\rangle|\psi\rangle \\
\left|\psi_{3}\right\rangle=\frac{1}{2^{N}} \sum_{J=0}^{2^{N}-1} \sum_{k=0}^{2^{N}-1} e^{\frac{2 \pi i k}{2^{N}}\left(2^{N} \theta-J\right)}|J\rangle|\psi\rangle
\end{gathered}
$$

Quantum Phase Estimation

QPE circuit analysis
The probability of measuring j

$$
\left|\psi_{3}\right\rangle=\frac{1}{2^{N}} \sum_{J=0}^{\frac{2^{N}-1}{}} \sum_{k=0}^{2^{N}-1} e^{\frac{2 \pi i k}{2^{N}}\left(2^{N} \theta-J\right)}|J\rangle|\psi\rangle \Rightarrow \operatorname{Pr}(J)=\left[\frac{1}{2^{N}} \sum_{K=0}^{2^{N}-1} e^{\frac{2 \pi \pi k}{2^{N}}\left(2^{N} \theta-J\right)}\right]^{2}
$$

Quantum Phase Estimation

QPE circuit analysis
The probability of measuring j

$$
\left|\psi_{3}\right\rangle=\frac{1}{2^{N}} \sum_{J=0}^{2^{N}-1} \sum_{k=0}^{2^{N}-1} e^{\frac{2 \pi i k}{2^{N}}\left(2^{N} \theta-J\right)}|J\rangle|\psi\rangle \Rightarrow \operatorname{Pr}(J)=\left[\frac{1}{2^{N}} \sum_{k=0}^{2^{N}-1} e^{\frac{2 \pi k K}{2^{N}}\left(2^{N} \theta-J\right)}\right]^{2}
$$

If $J=2^{N} \theta$ the probability becomes $P_{r}\left(J=2^{N} \theta\right)=1$

State after measurement:

$$
\left|\psi_{n}\right\rangle=\left|2^{N} \theta\right\rangle|\psi\rangle
$$

Shor Algorithm

Facorization Problem

Given N, find the two prime numbers such that

$$
N=p \times q
$$

Facorization Problem

Given N, find the two prime numbers such that

$$
N=p \times q
$$

Classically: Finding solution requires exponential time

Used in the RSA crypto system

Modified version of QPE to solve

 factorization in polynomial time

* Assuming we have a fault-tolerant quantum computer capable of executing Shor's algorithm by applying gates at the speed of current quantum computers based on superconducting circuits

Grover Search

Searching Problem

We have access to an unstructured database of 2^{N} elements, the task is to find the \tilde{x} element

Assume to have a function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ such that

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { IF } & x=\tilde{x} \\
0 & \text { IF } & x \neq \tilde{x}
\end{array}\right.
$$

Searching Problem

We have access to an unstructured database of 2^{N} elements, the task is to find the \tilde{x} element

Assume to have a function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ such that

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & x=\tilde{x} \\
0 & \text { if } & x \neq \tilde{x}
\end{array}\right.
$$

Classically, in order to find the searched element, we have to evaluate this function on 2^{N-1} inputs (on average)

Grover Algorithm

$$
\begin{gathered}
f(x)=\left\{\begin{array}{llll}
1 & \text { if } x=\tilde{x} & \text { Obtained via } \\
0 & \text { if } x \neq \tilde{x} & \text { the unitary } & U_{f}|x\rangle=\left\{\begin{array}{rr}
-|x\rangle & \text { if } x=\tilde{x} \\
\mid x) & \text { If } x \neq \tilde{x}
\end{array}\right. \\
U_{f}|x\rangle=(-1)^{f(x)}|x\rangle
\end{array}\right.
\end{gathered}
$$

Grover Algorithm

CINECA

Grover Algorithm

$$
U_{f}|x\rangle=(-1)^{g(x)}|x\rangle
$$

$$
S=2|0\rangle^{\otimes N}\left\langle\left. 0\right|^{\otimes N}-I\right.
$$

Grover Algorithm

$$
\begin{aligned}
& |0\rangle^{\otimes N}+\underbrace{H^{2^{N}} \text { times }}_{\text {Repeat } \sim} U_{f}^{U^{\otimes N}} \sqrt{S}-H^{\otimes N} \\
& U_{f}|x\rangle=(-1)^{8(x)}|x\rangle \\
& U_{S}=H^{\otimes N}\left(2|0\rangle^{\otimes N}\left\langle\left. 0\right|^{\otimes N}-I\right) H^{\otimes N}=2|s\rangle\langle s|-I\right.
\end{aligned}
$$

Grover Search

Grover Algorithm: geometrical analysis

Grover Search

Grover Algorithm: geometrical analysis

CINECA

Grover Search

Grover Algorithm: geometrical analysis

Amplitude of the searched element becomes negative

CINECA

Grover Search

Grover Algorithm: geometrical analysis

CINECA

Grover Algorithm

Quadratic speedup wrt the classical case, where we have to evaluate this function 2^{N-1} times

Quantum Computing @ CINECA

CINECA: Italian HPC center
CINECA Quantum Computing Lab:

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

r.mengoni@cineca.it https://www.quantumcomputinglab.cineca.it

