Introduction to Quantum Computing Day 2 - Quantum Algorithms

Mengoni Riccardo, PhD

22 June 2021

Quantum Computing @ CINECA

CINECA: Italian HPC center CINECA Quantum Computing Lab:

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

r.mengoni@cineca.it

Recap of Quantum Computing

Ψ^{*} Complex Conjugate

Scalar Product

$$\langle \phi | \psi \rangle = (\phi_{1}^{*} \phi_{2}^{*} \dots \phi_{n}^{*}) \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{n} \end{pmatrix}$$

Complex Number

Scalar Product

$$\langle \phi | \psi \rangle = \left(\phi_{1}^{*} \phi_{2}^{*} \dots \phi_{n}^{*} \right) \left(\begin{array}{c} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{n} \end{array} \right)$$

$$\text{The scalar product induces a norm} \\ \left| | |\psi \rangle | | = \sqrt{\langle \psi | \psi \rangle} \right|$$

 $\langle \phi | \Psi \rangle \in \mathbb{C}$

Complex Number

Outer Product

$$|\Psi\rangle \langle \phi| = \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \\ \vdots \\ \Psi_{n} \end{pmatrix} \begin{pmatrix} \phi_{1}^{*} & \phi_{2}^{*} & \dots & \phi_{n}^{*} \end{pmatrix} = \begin{pmatrix} \Psi_{1} & \phi_{2}^{*} & \Psi_{2} & \phi_{2}^{*} & \dots & \Psi_{2} & \phi_{n}^{*} \\ \Psi_{2} & \phi_{2}^{*} & \Psi_{2} & \phi_{2}^{*} & \dots & \Psi_{2} & \phi_{n}^{*} \\ \vdots & \vdots & \vdots & \vdots \\ \Psi_{n} & \phi_{2}^{*} & \Psi_{n} & \phi_{2}^{*} & \dots & \Psi_{n} & \phi_{n}^{*} \end{pmatrix}$$

Dimension = $n \times n$

1. Unit of Information

Classically

Unit of classical information is the bit State of a bit:

$$|0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Quantumly

To a closed quantum system is associated a space of states *H* which is a Hilbert space. The pure state of the system is then represented by a unit norm vector on such Hilbert space.

The unit of quantum information is the quantum bit a.k.a. Qubit

State of a qubit:

$$|\Psi\rangle = \lambda |0\rangle + \beta |1\rangle = \begin{pmatrix} \lambda \\ \beta \end{pmatrix}$$

Space of states:
$$\mathcal{H} \simeq \mathbb{C}^2$$

State of a qubit:

$$|\Psi\rangle = \langle 0\rangle + \beta |1\rangle = \begin{pmatrix} \chi \\ \beta \end{pmatrix}$$

 $\chi, \beta \in \mathbb{C}$ $|\chi|^2 + |\beta|^2 = 1$

Space of states: $\mathcal{H} \simeq \mathcal{C}^2$

State of a qubit:

$$|\Psi\rangle = \langle |0\rangle + \beta |1\rangle = \begin{pmatrix} \lambda \\ \beta \end{pmatrix}$$

 $\langle \lambda, \beta \in \mathbb{C}$ $|\langle x|^2 + |\beta|^2 = 1$

Can be parametrized as:

$$|\Psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$
$$\theta \in [0,\pi] \qquad \phi \in [0,2\pi]$$

2. Composite systems

Classically

State of N bits:

Quantumly

The space of states of a composite system is the tensor product of the spaces of the subsystems $(c^2 \otimes (c^2 \otimes ... \otimes c^2))$

State of N qubits:

$$\chi_{1} | 0 0 0 .. 0 \rangle + \chi_{2} | 1 0 0 .. 0 \rangle + \chi_{3} | 0 1 0 .. 0 \rangle + ... \quad \chi_{n} | 1 1 1 .. 1 \rangle$$

 $\chi_{1} \in \mathbb{C} \qquad \sum_{i} |\chi_{i}|^{2} = 1$

Quantum Entanglement

States that can be written as tensor product

$$|\Psi\rangle = |\Psi_1\rangle \otimes |\Psi_2\rangle \otimes \dots \otimes |\Psi_N\rangle$$

are called factorable or product states

Quantum Entanglement

States that **can NOT** be written as tensor product

$$|\Psi\rangle \neq |\Psi_1\rangle \otimes |\Psi_2\rangle \otimes ... \otimes |\Psi_N\rangle$$

are called entangled states

3. State Change

Classically: logic gates

Logic Gate	Symbol	Description	Boolean
AND		Output is at logic 1 when, and only when all its inputs are at logic 1,otherwise the output is at logic 0.	X = A•B
OR		Output is at logic 1 when one or more are at logic 1.If all inputs are at logic 0,output is at logic 0.	X = A+B
NAND		Output is at logic 0 when,and only when all its inputs are at logic 1,otherwise the output is at logic 1	$X = \overline{A \cdot B}$
NOR		Output is at logic 0 when one or more of its inputs are at logic 1.If all the inputs are at logic 0,the output is at logic 1.	X = A+B
XOR		Output is at logic 1 when one and Only one of its inputs is at logic 1. Otherwise is it logic 0.	X = A⊕ B
XNOR		Output is at logic 0 when one and only one of its inputs is at logic1.Otherwise it is logic 1. Similar to XOR but inverted.	X = A⊕ B
NOT		Output is at logic 0 when its only input is at logic 1, and at logic 1 when its only input is at logic 0.That's why it is called and INVERTER	$X = \overline{A}$

Quantumly

The state change of a closed quantum system is described by a unitary operator

$$i \frac{d(\Psi)}{dt} = H(\Psi) \implies |\Psi(t)\rangle = e^{-iHt} |\Psi(0)\rangle$$

$$\int U = e^{-iHt}$$

$$\int U = e^{-iHt}$$

4. Measurement

Classically

Measuring returns the state of a bit with certainty

Measurements do not affect the state of a bit

Quantumly

Measuring returns the bit state with some probability

Measurement affects the state of a qubit

Outcome

Quantumly

• To any observable physical quantity is associated an hermitian operator O

$$O | \sigma_i \rangle = \sigma_i | \sigma_i \rangle$$

• A measurement outcomes are the possibile eigenvalues $\{o_i\}$.

• The **probability of obtaining** o_i as a result of the measurement is

$$P_r(\sigma_i) = |\langle \psi | \sigma_i \rangle|^2$$

- The effect of the measure is to change the state $|\psi\rangle$ into the eigenvector of O

$$|\psi\rangle \rightarrow |\sigma_i\rangle$$

Quantum Algorithms

Quantum Algorithm = Quantum Circuit

A quantum circuit with *n* input qubits and *n* output qubits is defined by a unitary transformation

Quantum Algorithms

Single Qubit Gates

Generic single
qubit rotation:
$$R_{\vec{n}}(\theta) = \cos\left(\frac{\theta}{2}\right) \pm -\lambda \sin\left(\frac{\theta}{2}\right) \vec{n} \cdot \vec{\sigma}$$

Pauli matrices:

$$\sigma_{x} = X = \begin{pmatrix} \circ & 1 \\ 1 & \circ \end{pmatrix} \qquad \sigma_{y} = Y = \begin{pmatrix} \circ & -\lambda \\ \lambda & \circ \end{pmatrix} \qquad \sigma_{z} = Z = \begin{pmatrix} 1 & \circ \\ \circ & -1 \end{pmatrix}$$

Identity: $I = \begin{pmatrix} 1 & \circ \\ \circ & 1 \end{pmatrix}$

Single Qubit Gates: Hadamard

$$H = \frac{1}{N2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad H = -H + H = --H + ---H + --H + ---H + ---H + ---H + ----H + ----H$$

$$H(0) = \frac{1}{N_{2}} \left(|0\rangle + |1\rangle \right) = |+\rangle$$

$$H(1) = \frac{1}{N_{2}} \left(|0\rangle - (1) \right) = |-\rangle$$

Single Qubit Gates: Phase

$$U_{\phi} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} \qquad \begin{array}{l} U_{\phi} | 0 \rangle = | 0 \rangle \\ U_{\phi} | 1 \rangle = e^{i\phi} | 1 \rangle \\ U_{\phi} | 1 \rangle = e^{i\phi} | 1 \rangle \end{array}$$

Two Qubit Gates: SWAP

$$\bigcup_{SWAR} |Z_1\rangle |Z_2\rangle = |Z_2\rangle |Z_1\rangle \qquad Z_1, Z_2 \in \{0, 1\}$$

Quantum Algorithms: Gates

Two Qubit Gates: Control Not

$$\bigcup_{cx} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$U_{cx} = -$$

$$\begin{array}{l} \left(\int_{CX} \left| \Xi_{1} \right\rangle \left| \Xi_{2} \right\rangle = \left| \Xi_{1} \right\rangle \right)^{z} \left| \Xi_{2} \right\rangle \\ \left(\int_{CX} \left| 0 \right\rangle = \left| 0 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 0 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 0 \right\rangle = \left| 0 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right) \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle + \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle + \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle + \left| 1 \right\rangle = \left| 1 \right\rangle \right| \\ \left(\int_{CX} \left| 1 \right\rangle + \left| 1$$

Quantum Algorithms: Gates

Two Qubit Gates: Control Unitary $\left(\bigcup_{z_1} |z_2| = |z_1| \bigcup_{z_2}^{z_1} |z_2| \right)$

Quantum Algorithms: Gates

Three Qubit Gates: Toffoli

$$\left(\begin{array}{c} z_{2} \\ z_{2} \\ z_{3} \end{array} \right) = \left[z_{1} \\ z_{2} \end{array} \right) \times \left[z_{3} \\ z_{3} \end{array} \right)$$

Quantum Algorithms: Universality

Universal set of Quantum Gates

We can exactly build any unitary $\bigcup \in \bigcup (2^{n})$ on n qubits by means of single qubit gates and Control-Not $\mathcal{C}_{ex} = \left(\bigcup \in \bigcup (2) ; \bigcup_{cx} \right)$

Universal set of Quantum Gates

We can exactly build any unitary $\mathcal{T} \in \bigcup (2^n)$ on n qubits

by means of single qubit gates and Control-Not

$$\begin{aligned} \mathcal{G}_{\text{ex}} &= \left\{ \begin{array}{l} \mathcal{U} \in \mathcal{U}(2) \\ \mathcal{U}_{\text{cx}} \end{array} \right\} \\ \mathcal{R}_{\vec{n}} \left(\theta \right) &= \cos \left(\frac{\theta}{2} \right) \mathbf{I} - \lambda \sin \left(\frac{\theta}{2} \right) \vec{n} \cdot \vec{\sigma} \end{aligned} \qquad \begin{aligned} \mathcal{U}_{\text{cx}} &= \left(\begin{array}{l} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{array} \right) \\ \mathbf{O} &= \left(\begin{array}{l} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{array} \right) \end{aligned}$$

Universal set of Quantum Gates Given $(), ()^{l} \in U(2^{n}), ()^{l}$ approximates () within $\varepsilon \quad (\varepsilon)$ if $d(0, 0^{l}) < \varepsilon$

Universal set of Quantum Gates Given $(), ()^{l} \in U(2^{n}), ()^{l}$ approximates () within $\varepsilon \quad (\varepsilon_{2}, \circ)$ if $d(0, 0^{l}) < \varepsilon$

where
$$d(U,U') = \max_{\substack{\{\Psi\}}} ||(U-U')|\Psi\rangle||$$

and $|||\Psi\rangle|| = \sqrt{\langle\Psi|\Psi\rangle}$

Quantum Algorithms: Universality

Universal set of Quantum Gates

We can approximate any unitary $\mathcal{J} \in \bigcup_{(2^n)}$ on n qubits by means of the following gates

$$\begin{array}{c} dH, S, T, U_{cx} \\ H = \frac{1}{N\Sigma} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ \end{array} \begin{array}{c} S = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \\ \end{array} \begin{array}{c} T = \begin{pmatrix} 1 & 0 \\ 0 & e^{\lambda T_{A}} \end{pmatrix}$$

Multiple Hadamard gates

Single Qubit Gates: Hadamard

$$H(0) = \frac{1}{N_{2}} \left(|0\rangle + |1\rangle \right) = |+\rangle$$

$$H(1) = \frac{1}{N_{2}} \left(|0\rangle - (1) \right) = |-\rangle$$

Multiple Hadamard gates

$$-H = \frac{1}{N_2} \left(\frac{10}{10} + \frac{10}{11} + \frac{11}{12} \right)$$

Function evaluation

Given a function $f: \{0,1\}^{n} \rightarrow \{0,1\}^{n}$, an algorithm to evaluate such function is given by the unitary \bigcup_{f}

$$|x\rangle|y\rangle \xrightarrow{\cup_{F}} |x\rangle|y \oplus f(x)\rangle$$

where
$$X \in \{0,1\}^N$$
 $y \in \{0,1\}^M$

D-J Problem

Consider a function $f: \{\circ, \downarrow\}^{\vee} \rightarrow \{\circ, \downarrow\}^{\vee}$ with the premise that it is either constant (returns 0 on all inputs or 1 on all inputs) or balanced (returns 1 for half of the inputs and 0 for the other half).

How many evaluations («queries») of the function are needed to determine with certainty if such function is balanced or constant?

How many evaluations («queries») of the function are needed to determine with certainty if such function is balanced or constant?

Classically

Since the possible input strings are 2^N , we need to check on average (half +1) strings, i.e. $2^{N-1} + 1$ strings

Classical Query Complexity $\sim 2^{N-1} + 1$

Quantum Solution

$$\left\{ f: \left\{ 0, 1 \right\}^{N} \longrightarrow \left\{ 0, 1 \right\}^{N} \text{ and } \left[x \right\} \left[y \right] \xrightarrow{\bigcup_{f}} \left[x \right] \left[y \oplus f(x) \right] \right\}$$

Step by step analysis

.

$$|O\rangle^{\otimes N}|_{\mathcal{I}} \xrightarrow{H^{\otimes N}H} H^{\otimes N}|_{O}\rangle^{\otimes N} H|_{\mathcal{I}} = \frac{1}{N_{2}^{N}} \sum_{X} |X\rangle \left(\frac{10) - |z\rangle}{N_{2}}\right)$$

$$|O\rangle^{\otimes N}|_{\mathcal{I}} \xrightarrow{H^{\otimes N}H} H^{\otimes N}|_{O}\rangle^{\otimes N} H|_{\mathcal{I}} = \frac{1}{N_{2^{N}}} \sum_{X}|_{X} \left(\frac{10) - |_{\mathcal{I}}}{N_{2}}\right)$$

$$\frac{1}{N_2^N} \sum_{X} |X\rangle \left(\frac{10) - |z\rangle}{N_2}\right) \xrightarrow{U_g}{U_g}$$

.

$$|0\rangle^{\otimes N}|_{\mathcal{I}} \xrightarrow{H^{\otimes N}H} H^{\otimes N}|_{\mathcal{I}}|_{\mathcal{I}} \xrightarrow{\mathbb{N}} \frac{1}{N_{2}} \xrightarrow{\mathbb{N}} \frac{1}{N} \frac{$$

$$\frac{1}{N_2^N} \sum_{X} |X\rangle \left(\frac{10) - |z\rangle}{N_2}\right) \xrightarrow{U_F} \frac{1}{N_2^N} \sum_{X} |X\rangle \frac{100}{N_2^N} - \frac{1}{N_2^N} \sum_{X} |X\rangle \frac{100}{N_2^N} = \frac{1}{N_2^N} \sum_{X} |X\rangle \frac{100}{N_2} = \frac{1}{N_2^N} \sum_{X} \frac{1}{N_2} \sum_{X} \frac{1$$

$$|0\rangle^{\otimes N}|_{\mathcal{I}} \xrightarrow{H^{\otimes N}H} H^{\otimes N}|_{\mathcal{I}}|_{\mathcal{I}} \xrightarrow{\mathbb{N}} \frac{1}{N^{2N}} \xrightarrow{\mathbb{N}} |X\rangle \left(\frac{10)-12}{N^{2}}\right)$$

$$\frac{1}{N_{2^{N}}} \sum_{X} |X\rangle \left(\frac{10) - |z\rangle}{N_{2}}\right) \xrightarrow{\bigcup g} \frac{1}{N_{2^{N}}} \sum_{X} |X\rangle \frac{100}{N_{2}} |X\rangle \frac{1}{N_{2^{N}}} \sum_{X} |X\rangle \frac{100}{N_{2}} |X\rangle \frac{1}{N_{2^{N}}} \sum_{X} |X\rangle \frac{100}{N_{2}} |X\rangle \frac{1}{N_{2^{N}}} = \frac{1}{N_{2^{N}}} \sum_{X} |X\rangle \frac{100}{N_{2}} |X\rangle \frac{1}{N_{2}} = \frac{1}{N_{2}} \sum_{X} |X\rangle \frac{1}{N_{2}} \frac{1}{$$

$$= \frac{1}{\sqrt{2^{N}}} \sum_{X} |X\rangle \left(\frac{|g(X)\rangle - |4 \oplus g(X)\rangle}{\sqrt{2}}\right)$$

$$\frac{1}{\sqrt{2^{N}}} \geq |x\rangle \left(\frac{|g(x)\rangle - | \mathbf{1} \oplus g(x)\rangle}{\sqrt{2}}\right)$$

$$\frac{1}{\sqrt{2^{N}}} \sum_{X} |X\rangle \left(\frac{|g(X)\rangle - |z \oplus g(X)\rangle}{\sqrt{2}}\right) = \frac{1}{\sqrt{2^{N}}} \sum_{X} (-2)^{g(X)} |X\rangle \left(\frac{|0\rangle - |z\rangle}{\sqrt{2}}\right)$$

$$\frac{1}{N_{2^{N}}} \sum_{x} (-1)^{\vartheta(x)} |x\rangle \left(\frac{10) - (1)}{N_{2}}\right)$$

$$\frac{1}{N_2^N} \sum_{x} (-2)^{\beta(x)} |x\rangle \left(\frac{10) - (1)}{N_2}\right)$$

 $\sum_{\mathcal{Y}} \left[\frac{1}{2^{N}} \sum_{\mathcal{X}} \left(-\iota \right)^{\mathcal{Y} \cdot \mathbf{X} \oplus \mathcal{G}(\mathbf{X})} \right] | \mathbf{y} \rangle$

$$\sum_{\mathcal{Y}} \left[\frac{1}{2^{N}} \sum_{\mathcal{X}} (-1)^{\mathcal{Y} \cdot \mathcal{X} \oplus \mathcal{Y}(\mathcal{X})} \right] |\mathcal{Y} \rangle \Rightarrow \text{Outcome } \mathcal{Y} \in \left\{ 0, 1 \right\}^{N} \text{ with } \mathcal{P}_{\mathcal{T}} \left(\mathcal{Y} \right) = \left[\frac{1}{2^{N}} \sum_{\mathcal{X}} (-1)^{\mathcal{Y} \cdot \mathcal{X} \oplus \mathcal{Y}(\mathcal{X})} \right]^{2}$$

Step by step analysis

$$\sum_{\mathcal{Y}} \left[\frac{1}{2^{N}} \sum_{\mathcal{X}} (-1)^{\mathcal{Y} \cdot \mathcal{X} \oplus \mathcal{Y}(\mathcal{X})} \right] |\mathcal{Y} \rangle \Rightarrow \text{Outcome } \mathcal{Y} \in \left\{ 0, 1 \right\}^{N} \text{ with } \mathcal{P}_{\mathcal{T}} \left(\mathcal{Y} \right) = \left[\frac{1}{2^{N}} \sum_{\mathcal{X}} (-1)^{\mathcal{Y} \cdot \mathcal{X} \oplus \mathcal{Y}(\mathcal{X})} \right]^{2}$$

(returns 0 on all inputs or 1 on all inputs)

Step by step analysis

$$\sum_{y} \left[\frac{1}{2^{N}} \sum_{x} (-1)^{y \cdot x \oplus g(x)} \right] |y\rangle \Rightarrow \text{Outcome } y \in \{0, 1\}^{N} \text{ with } \Pr(y) = \left[\frac{1}{2^{N}} \sum_{x} (-1)^{y \cdot x \oplus g(x)} \right]^{2}$$

$$f$$
 constant \Rightarrow $g = (0, 0, 0, ..., 0)$

$$P_{\mathcal{T}}(y) = \left[\frac{1}{2^{N}} \sum_{x}^{2} (-1)^{x}\right]^{2} = 1$$

(returns 0 on all inputs or 1 on all inputs)

Step by step analysis

$$\sum_{\mathcal{Y}} \left[\frac{1}{2^{N}} \sum_{\mathcal{X}} (-1)^{\mathcal{Y} \cdot \mathcal{X} \oplus \mathcal{Y}(\mathcal{X})} \right] |\mathcal{Y} \rangle \Rightarrow \text{Outcome } \mathcal{Y} \in \left\{ 0, 1 \right\}^{N} \text{ with } \Pr\left(\mathcal{Y}\right) = \left[\frac{1}{2^{N}} \sum_{\mathcal{X}} (-1)^{\mathcal{Y} \cdot \mathcal{X} \oplus \mathcal{Y}(\mathcal{X})} \right]^{2}$$

(returns 1 for half of the inputs and 0 for the other half)

Step by step analysis

$$\sum_{g} \left[\frac{1}{2^{N}} \sum_{x} (-1)^{y, x \oplus g(x)} \right] |y\rangle \Rightarrow \text{Outcome } y \in \langle 0, 1 \rangle^{N} \text{ with } \Pr(y) = \left[\frac{1}{2^{N}} \sum_{x} (-1)^{y, x \oplus g(x)} \right]^{2}$$

$$\int \text{balanced} \Rightarrow y = (0,0,0..0) \left[\Pr(y) = \left[\frac{1}{2^N} \sum_{x}^{3(-1)} \right]^2 = 0 \right]$$

(returns 1 for half of the inputs and 0 for the other half)

How many evaluations («queries») of the function are needed to determine with certainty if the function is balanced or constant?

How many evaluations («queries») of the function are needed to determine with certainty if the function is balanced or constant?

B-V Problem

Consider a function
$$f: \{0,1\}^{n} \rightarrow \{0,1\}^{n}$$
 such that

$$f(\mathbf{X}) = \mathbf{W} \cdot \mathbf{X} = (\mathbf{W}_1 \, \mathbf{W}_2 \dots \mathbf{W}_N) \cdot (\mathbf{X}_1 \, \mathbf{X}_2 \dots \mathbf{X}_N)$$

The task is to find the string *w*

Classical Solution

$$f(\mathbf{X}) = \mathbf{W} \cdot \mathbf{X} = (\mathbf{w}_1 \, \mathbf{w}_2 \dots \mathbf{w}_N) \cdot (\mathbf{X}_1 \, \mathbf{X}_2 \dots \mathbf{X}_N)$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 1 \ 0 \ 0 \ \dots \ 0 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 1 \ 0 \ \dots \ 0 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 0 \ 0 \ \dots \ 0 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 0 \ 0 \ \dots \ 1 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 0 \ 0 \ \dots \ 1 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 0 \ 0 \ \dots \ 1 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 0 \ 0 \ \dots \ 1 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 0 \ 0 \ \dots \ 1 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 0 \ 0 \ \dots \ 1 \end{pmatrix}$$

$$\begin{pmatrix} \omega_{1} \ \omega_{2} \ \dots \ \omega_{N} \end{pmatrix} \cdot \begin{pmatrix} 0 \ 0 \ 0 \ \dots \ 1 \end{pmatrix}$$

Quantum Solution (same circuit)

$$\left\{ f: \left\{ 0, 1 \right\}^{N} \longrightarrow \left\{ 0, 1 \right\}^{N} \text{ and } \left[x \right\} \left[y \right] \xrightarrow{\bigcup_{f}} \left[x \right] \left[y \oplus f(x) \right\} \right\}$$

$$|0\rangle |1\rangle \xrightarrow{\text{HH}} \frac{1}{\sqrt{2^N}} \sum_{X} |X\rangle \left(\frac{|0\rangle - |4\rangle}{\sqrt{2}}\right)$$

$$|0\rangle |1\rangle \xrightarrow{H^{H}H} \frac{1}{\sqrt{2^{N}}} \geq |X\rangle \left(\frac{|0\rangle - |4\rangle}{N^{2}}\right)$$

$$\frac{1}{\sqrt{2^{N}}} \sum_{X} |X\rangle \left(\frac{|0\rangle - |4\rangle}{\sqrt{2}}\right) \xrightarrow{V_{g}}{\frac{1}{\sqrt{2^{N}}}} \sum_{X} |X\rangle \left(\frac{|W \cdot X\rangle - |4 \oplus W \cdot X\rangle}{\sqrt{2}}\right)$$

$$|0\rangle |1\rangle \xrightarrow{HH} \frac{1}{\sqrt{2^{N}}} \sum_{x} |x\rangle \left(\frac{|0\rangle - |4\rangle}{\sqrt{2}}\right)$$

$$\frac{1}{\sqrt{2^{N}}} \sum_{X} |X\rangle \left(\frac{|0\rangle - |4\rangle}{\sqrt{2}}\right) \xrightarrow{U_{g}}{\frac{1}{\sqrt{2^{N}}}} \sum_{X} |X\rangle \left(\frac{|W \cdot X\rangle - |4 \oplus W \cdot X\rangle}{\sqrt{2}}\right)$$

$$= \frac{1}{N_2^N} \sum_{X} (-1)^{W \cdot X} |X\rangle \left(\frac{10\rangle - 11\rangle}{N_2}\right)$$

$$\frac{1}{N_2^N} \sum_{X} (-1)^{W \cdot X} |X\rangle \left(\frac{100 - 110}{N_2}\right)$$

$$= \frac{1}{2^{N}} \sum_{y,x} (-1)^{y,x \oplus w,x} |y\rangle = \sum_{y} \left[\frac{1}{2^{N}} \sum_{x} (-1)^{y,x \oplus w,x} \right] |y\rangle$$

$$\sum_{\mathcal{Y}} \left[\frac{1}{2^{N}} \sum_{\mathcal{X}} \left(-1 \right)^{\mathcal{Y} \cdot \mathcal{X} \bigoplus \mathcal{W} \cdot \mathcal{X}} \right] | \mathcal{Y} \rangle$$

$$P_{\mathcal{T}}(\omega) = \left(\frac{1}{2^{N}} \sum_{x} (-1)^{(\omega \oplus \omega)x}\right)^{2} = 1$$

Quantumly we need **1 evaluation** of the function **to recover** *w* (classically it was N)

Simon Problem

Consider a function
$$f: \{0,1\}^n \rightarrow \{0,1\}^n$$
 such that

$$\exists p \in \{0, z\}^{N} \Rightarrow f(x \oplus p) = f(x) \quad \forall x \in \{0, z\}^{N}$$

The task is to find the string ρ

Simon Problem

x	f(x)
000	101
001	010
010	000
011	110
100	000
101	110
110	101
111	010

Simon Problem

x	f(x)
000	101
001	010
010	000
011	110
100	000
101	110
110	101
111	010

$$p = 110$$

Classical Solution

Consider *M* strings $\chi^{(1)}, \chi^{(2)}, \chi^{(N)}$ with $\chi^{(N)} \in \{0, 1\}^N$ and check if

$$f(X^{(\lambda)}) = f(X^{(\tau)}), \text{ if so } X^{(\lambda)} = X^{(\tau)} \oplus \rho \rightarrow \rho = X^{(\lambda)} \oplus X^{(\tau)}$$

The total number of checks using *M* strings is

Classical Solution

The probability of finding p using M strings is hence

$$P_{\mathcal{R}}(p) = \frac{M(M-1)}{2} / 2^{N}$$

If we want at least $P_{\mathcal{T}}(\varphi) > \frac{1}{2}$ this means that

Quantum Solution (not the same circuit)

$$f: \{0,1\}^{\mathsf{N}} \longrightarrow \{0,1\}^{\mathsf{n}} \text{ and } |\mathsf{x}\rangle|\mathsf{y}\rangle \xrightarrow{\mathsf{U}_{\mathsf{F}}} |\mathsf{x}\rangle|\mathsf{y} \oplus f(\mathsf{x})\rangle$$

0>10>

$$\frac{1}{\sqrt{2^{N}}} \gtrsim |X\rangle |0\rangle^{\otimes N} \xrightarrow{\bigcup g} \frac{1}{\sqrt{2^{N}}} \xrightarrow{X} |X\rangle |g(x)\rangle$$

 $\frac{1}{\sqrt{2^{N}}} \sum_{x} |x\rangle |g(x)\rangle$

Step by step analysis

$$\frac{1}{\sqrt{2^{N}}} \sum_{x} |x\rangle | g(x) \rangle$$
 and **measure** the **second register**

Suppose we measure $|f(\alpha)\rangle$, the state after the measurement is

$$\frac{1}{N_{2}}\left(|\widetilde{X}\rangle + |\widetilde{X} \oplus P\rangle\right)|g(\widetilde{X})\rangle$$

$$\frac{1}{N_2} \left(|\tilde{X}\rangle + |\tilde{X} \oplus P\rangle \right) |g(\tilde{X})\rangle$$

$$= \sum_{y} \frac{1}{\sqrt{2^{N+1}}} \left[\left(-1 \right)^{y} \cdot \hat{x}^{y} + \left(-1 \right)^{y} \cdot \left(\hat{x} \oplus p \right) \right] |y\rangle$$

Outcome string *y* with probability

$$= \sum_{y \in \mathbb{N}^{N+1}} \left[\left(-1 \right)^{y, \hat{x}} + \left(-1 \right)^{y, (\hat{x} \oplus p)} \right] | y \rangle \Rightarrow \left[P_{r_{z}}(y) = \frac{1}{2^{N+1}} \left[\left(-1 \right)^{y, \hat{x}} + \left(-1 \right)^{y, (\hat{x} \oplus p)} \right]^{2} \right]$$

Step by step analysis

$$P_{rc}(y) = \frac{1}{2^{N+1}} \left[\left(-1 \right)^{y, \overline{x}} + \left(-1 \right)^{y, (\overline{x} \oplus p)} \right]^2$$

Step by step analysis

 $P_{rz}(y) = \frac{1}{2^{N+1}} \left[\left(-1 \right)^{y, \vec{x}} + \left(-1 \right)^{y, \left(\vec{x} \oplus p \right)} \right]^2 \Rightarrow$

If $\rho \cdot \gamma = 1$ we get $P_{\pi}(\gamma) = \frac{1}{2^{N+1}} \left[(-1)^{\gamma} \cdot \tilde{x} - (-1)^{\gamma} \cdot \tilde{x} \right]^2 = 0$ We always find a string s.t.

 $p \cdot y = 0$

If
$$\rho \cdot \gamma = 1$$
 we get

$$P_{rc}(\gamma) = \frac{1}{2^{N+1}} \left[\left(-1 \right)^{\gamma, \tilde{x}} - \left(-1 \right)^{\gamma, \tilde{x}} \right]^2 = 0$$

To recover pwe need to solve this linear system $\begin{pmatrix} \varphi \cdot \mathcal{Y}^{(2)} = 0 \\ \varphi \cdot \mathcal{Y}^{(2)} = 0 \\ \varphi \cdot \mathcal{Y}^{(N)} = 0 \end{pmatrix}$

We always find a string s.t.

 $p \cdot y = 0$

Step by step analysis

$$\begin{cases} \begin{array}{c} \varphi \cdot y^{(4)} = 0 \\ \varphi \cdot y^{(2)} = 0 \\ \vdots \\ \varphi \cdot y^{(N)} = 0 \end{array} \qquad \text{The probability of having } y^{(4)} y^{(2)} \dots y^{(m)} \text{ linearly independent is: } \\ \begin{array}{c} \varphi_{\mathcal{H}} \left(L, 1 \right) \\ z^{N} \end{array} \qquad \text{with } m < N \\ \end{array}$$

Step by step analysis

 $\begin{cases} \rho \cdot g^{(4)} = 0 \\ \rho \cdot g^{(2)} = 0 \end{cases}$ The probability of having $g^{(4)} g^{(2)} \cdots g^{(m)}$ linearly independent is: $\rho_{R}(L,1) = 4 - \frac{2^{M}}{2^{N}}$ with m < Ni i i i i independent to be sure to find a L i port used algorithm a number of times equal to

$$\frac{1}{1-\frac{2^{m}}{2^{N}}} \leq 2$$

Step by step analysis

Discrete Fourier Transform

Given a function $f: \mathcal{G} \twoheadrightarrow \mathcal{C}$, the DFT is defined as

$$\underbrace{f(\mathfrak{Z}^{\mathsf{K}})}_{\mathsf{N}} = \frac{\gamma_{\mathsf{N}}}{1} \sum_{\mathsf{N}=0}^{\mathsf{Z}=0} \chi^{\mathsf{K}}(\mathfrak{Z}^{\mathsf{Z}}) \underbrace{f(\mathfrak{Z}^{\mathsf{Z}})}_{\mathsf{N}}$$

where
$$\chi_{\kappa}(\mathcal{G}_{J}) = e^{2\pi \lambda \frac{KJ}{N}}$$

Given a basis state $|g_{3}\rangle$, the QFT is defined as

$$|g_{J}\rangle \xrightarrow{qft} \frac{1}{NN} \sum_{K=0}^{N-1} \chi_{K}(g_{J})|g_{K}\rangle$$

where
$$\chi_{\kappa}(\mathfrak{Z}_{\mathfrak{Z}}) = e^{2\pi i \frac{\kappa_{\mathfrak{Z}}}{N}}$$

Quantum Fourier Transform

Given a state $|\langle \psi \rangle = \sum_{J=0}^{N-1} f(\vartheta_J) |\vartheta_J\rangle$, the QFT is defined as

$$\left(\psi \right) = \sum_{J=0}^{N-1} f(g_J) \left(g_J \right) \left(g_J \right) \sum_{J=0}^{N-1} f(g_J) \left(g_J \right) \frac{1}{NN} \sum_{K=0}^{N-1} \chi_K(g_J) \left(g_K \right)$$

where
$$\chi_{\kappa}(\mathfrak{Z}_{\mathfrak{Z}}) = e^{2\pi \lambda \frac{K\mathfrak{Z}}{N}}$$

Suppose $\Im \in \{0, ..., 2^{N-1}\}$ i.e. the dimension of the space is 2^{N}

The QFT in this case becomes

$$\left(J \right) \xrightarrow{\text{QFT}} D \xrightarrow{1} 2^{N-1} 2^{T_{1}} \underbrace{\times J}_{2^{N}} \left(K \right)$$

 $\sqrt{2^{N}} \underbrace{\times}_{K=0}^{2^{N-1}} e^{2\pi i \frac{KJ}{2^{N}}} \left(K \right)$

Is it possible to realize such transformation efficiently on a Quantum Computer?

QFT Circuit

It is possible to rewrite the previus equation as follows

$$\left(J \right) \xrightarrow{\mathbf{Q} \mathsf{FT}} D \xrightarrow{\mathbf{1}} \sum_{K=0}^{2^{N}-1} e^{2\pi i \frac{KJ}{2^{N}}} |K\rangle = \frac{1}{\sqrt{2^{N}}} \bigotimes_{L=1}^{N} \left(|0\rangle + e^{\frac{2\pi i J}{2^{L}}} |I\rangle \right)$$

QFT Circuit

It is possible to rewrite the previus equation as follows

$$\left(\begin{array}{c} J \right) \xrightarrow{\mathbf{R} \mathsf{FT}} \mathbf{D} \xrightarrow{\mathbf{1}} \underbrace{\mathbf{1}}_{N 2^{N}} \underbrace{\sum_{k=0}^{2^{N}-1}}_{K=0} \underbrace{\mathbf{2} \pi \overset{\mathsf{K} \mathsf{K} \mathsf{J}}_{2^{N}}}_{K=0} \left(\mathsf{K} \right) = \underbrace{\frac{1}{\sqrt{2^{N}}} \bigotimes_{L=1}^{N} \left(10\right) + e^{\underbrace{\mathbf{2} \pi \overset{\mathsf{L} \mathsf{J}}_{2^{L}}}_{2^{L}} \left(12\right) \right) }_{\left(\begin{array}{c} J_{2} \right) \xrightarrow{\mathbf{H} - \mathbb{R}_{2}} \\ \vdots \\ \vdots \\ \vdots \\ J_{N} \right) \xrightarrow{\mathbf{H} - \mathbb{R}_{2}} \\ \vdots \\ J_{N} \right) \xrightarrow{\mathbf{H} - \mathbb{R}_{2}} \\ \end{array}$$

QFT Circuit Proof

QPE problem

Given a Unitary () and a quantum state $|\psi\rangle$ such that

$$\bigcup |\Psi\rangle = e^{2\pi \lambda \Theta} |\Psi\rangle$$

The task is to estimate Θ

QPE circuit

$$|\Psi_{0}\rangle = |0\rangle^{\otimes N} |\Psi\rangle \longrightarrow |\Psi_{1}\rangle = \frac{1}{\sqrt{2^{N}}} (|0\rangle + |1\rangle)^{\otimes N} |\Psi\rangle$$

If $\Im = 2^{n} \Theta$ the probability becomes $\Re_{\mathcal{R}} (\Im = 2^{n} \Theta) = 1$

State after measurement: $|\Psi_h\rangle = |2^N\Theta\rangle|\Psi\rangle$

Facorization Problem

Given ${\it N}$, find the two prime numbers such that

$$N = p \times q$$

Facorization Problem

Given ${\it N}$, find the two prime numbers such that

$$N = p \times q$$

Classically: Finding solution requires exponential time

Used in the RSA crypto system

Modified version of QPE to solve factorization in polynomial time

Run time **Exponential** Time to factor a speedup 2048-digits number Number Field Sieve ~ billions of years $\exp(1.9\log(n^{1/3}) * \log(\log(n))^{2/3})$ Shor's Algorithm $\log(n^3)$ ~ seconds* 500 1000 1500 2000 n Number of bits

* Assuming we have a fault-tolerant quantum computer capable of executing Shor's algorithm by applying gates at the speed of current quantum computers based on superconducting circuits

Grover Search

Searching Problem

We have access to an unstructured database of 2^N elements, the task is to find the $\stackrel{\sim}{\times}$ element

Assume to have a function $\mathcal{J}: \{0,1\}^{N} \rightarrow \{0,1\}^{N}$ such that

$$f(x) = \begin{cases} 1 & \text{IF } x = \widetilde{x} \\ 0 & \text{IF } x \neq \widetilde{x} \end{cases}$$

Searching Problem

We have access to an unstructured database of 2^N elements, the task is to find the $\stackrel{\sim}{\times}$ element

Assume to have a function
$$\mathcal{J}: \{0,1\}^{n} \rightarrow \{0,1\}^{n}$$
 such that

$$f(x) = \begin{cases} 1 & \text{IF } x = \widetilde{x} \\ 0 & \text{IF } x \neq \widetilde{x} \end{cases}$$

Classically, in order to find the searched element, we have to evaluate this function on 2^{N-1} inputs (on average)

$$f(x) = \begin{cases} 1 & \text{IF } x = \widetilde{x} \\ 0 & \text{IF } x \neq \widetilde{x} \end{cases}$$

$$(f \times = \begin{cases} -|x\rangle & \text{if } x = \overrightarrow{x} \\ |x\rangle & \text{if } x \neq \overrightarrow{x} \end{cases}$$

$$\left(f(x) = (-1)^{f(x)} | x \right)$$

Grover Algorithm: geometrical analysis

Grover Algorithm: geometrical analysis

Quantum Computing @ CINECA

CINECA: Italian HPC center CINECA Quantum Computing Lab:

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

r.mengoni@cineca.it

