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2 - Qubit Loss Error Correction:
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A quantum computer is ...

a computer ... —— _
which works based on the laws of c'ass'ca|b'_rt‘f°rmat'°”
quantum physics o s
. . _ o
Central ingredients: $,410110
P> quantum superposition principle .

B> gquantum mechanical entanglement

Basic unit in quantum information:
two-level system = quantum bit (qubit) Where?

~ spins of electrons
‘1> ‘ ‘¢> — CO|O> + Cl‘l> ~ two energy levels of atoms/ions
Co, C1 € C = polarlzatlor_1 states of photons
—|0) * - Josephson junctions




Why should we build a large-scale and fault-tolerant quantum
computer?

prime factoring

(Shor’s alg.) data base search

(Grover’s alg.) many-body

quantum
systems

universal quantum
simulation




Main obstacle fowards quantum computers:
decoherence & errors

Coupling to the environment causes decoherence

‘:E

Examples

1. Magnetic field fluctuations
1) = agl0) + a1|1) quantum state

‘ dephasing

p = |aol?0)(0] + |a1|?|1)(1] classical state




Main obstacle fowards quantum computers:
decoherence & errors

Coupling to the environment causes decoherence

‘ E
Examples
1. Magnetic field fluctuations 2. Losses

1) = agl0) + a1|1) quantum state

‘ dephasing

p = |aol?0)(0] + |a1|?|1)(1] classical state

Inaccessible qubits




Need for error correction: naive approach ...

B Classical world: ...011010...

protection by redundancy
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Need for error correction: naive approach ... fails

B Classical world: ...011010...

protection by redundancy

...011010... ...010010... ...011010... recover: ...011010...

D> Quantum_world: not possible in this way BRI SEies i be o)
no-cloning theorem for quantum states
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o, Topological quantum error correction
with the toric code

O 0,




Kitaev’s toric code

A. Yu. Kitaev, Annals of Physics, 303 (2003)
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Kitaev’s toric code

A. Yu. Kitaev, Annals of Physics, 303 (2003)

eQubits @ on the links / bonds
of a 2D square lattice 7

e 2 types of stabilisers

- —S.=727Z

they all
commute
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Kitaev’s toric code

S:|vL) = +|vr) Szlr) = +[YL)

Logical info

A. Yu. Kitaev, Annals of Physics, 303 (2003)
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Kitaev’s toric code

A. Yu. Kitaev, Annals of Physics, 303 (2003)
Q eQubits @ on the links / bonds
of a 2D square lattice Vi

e 2 types of stabilisers

Xg ’ ©
/S — 7777

they all
commute

S, = XXXX

Errors

code space

S:|vL) = +|vr) Szlr) = +[YL)

logical states
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Logical qubits

Logical operators
» must commute with all stabilisers

» must be independent
» must respect the anticommutation relations

e.g. {le Zl} _ 0
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Logical operators
» must commute with all stabilisers

» must be independent
» must respect the anticommutation relations

e.g. {lezl} — 0
e @
-9 --@--9--%-X, =0/05..00
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Logical qubits

code space




Logical operators
» must commute with all stabilisers

» must be independent
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Logical operators
» must commute with all stabilisers

» must be independent

e.g. L
{Xla Zl} =0

» must respect the anticommutation relations

Logical qubits

Logical operators = strings that
percolate through the lattice and
change the logical state in the code space

code space




Logical operators

e.g.

» must commute with all stabilisers
» must be independent
» must respect the anticommutation relations

{Xla Zl} =0

Logical qubits

@ ®
- --Q--@--9-X, =070,5...0,
& @ & Logical operators = strings that
Q O percolate through the lattice and
f change the logical state in the code space
oo @
S @ ® o Qubit
- Losses code space
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Redefine the plaquette/vertex
and the logical operators
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Qubit losses in the toric code

T. Stace, S. Barrett, A. Doherty,
PRL 102, 200501 (2009)
PRA 81, 022317 (2010)
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Qubit losses in the toric code

Redefine the plaquette/vertex T. Stace, S. Barrett, A. Doherty,
and the logical operators PRL 102, 200501 (2009)
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Redefine the plaquette/vertex
and the logical operators

The loss affects

Qubit losses in the toric code

T. Stace, S. Barrett, A. Doherty,
PRL 102, 200501 (2009)
PRA 81, 022317 (2010)
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Action on logical states:

ZYr)

Qubit losses in the toric code

What about the logical

operators?

Use stabilisers to
deform logical operators
that go through the lost qubits

E(> avoid the positions of losses
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Qubit losses in the toric code

yh y yh A
z — 09040504

What about the logical

operators?

®
Use stabilisers to
- deform logical operators
that go through the lost qubits
®

C{> avoid the positions of losses

~7 = 0{0,0%0g

_ _ Example:
Action on logical states:

Z|¢L> 010503 ¢L>
 sun - (ipgod) Koioiod v
— oioioioioiliL)




7 = 070502 Qubit losses in the toric code

B R R R

— 02040504

® What about the logical

Q 1 operators?

loss \\.A Use stabilisers to

- 3 deform logical operators

0 that go through the lost qubits
3
* ° d> avoid the positions of losses

L R R R

7' = o%0ioiof

_ _ Example:
Action on logical states:

Z|¢L> OZO_SUEBZ ¢L>
e i Rgoto

Z 2 R R __Z
= 7'|p) = 0104050605|YL)
How many losses can be tolerated?




Qubit losses in the toric code

no percolating path <= no logical operator

Encoded qubit lost

The threshold for losses is given by
the bond percolation threshold
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Qubit losses in the toric code
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Qubit losses in the toric code

-elirared
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® o © @
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Qubit losses in the toric code
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Qubit losses in the toric code

D-olro-b-ed
NZA. BNV NP N>z : .
| no percolating path <P no logical operator
® o & 6
<> 4 &> Q (;/ \)*' Encoded qubit lost
* ¢ & ¢

o Q <>j‘ The threshold for losses is given by

‘ | * the bond percolation threshold
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De = 1 /2 qubit loss
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(square lattice) probability p
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Qubit Loss Error Correction:
Theory and Experiment
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2 - Qubit Loss Error Correction: Theory and Experiment

e Provide a toolbox for correcting losses in generic quantum codes
Detect if the loss has happened

Decide if correcting or not the code

e Devise the smallest example in a trapped ion setup

R. Stricker, DV, M. Ringbauer, P. Schindler, T. Monz, M. Muller, R. Blatt
Deterministic correction of qubit loss, in preparation



Experimental qubit loss detection and correction:
The whole picture
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Minimal example
4 physical qubits
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Minimal example

4 physical qubits

3 stabilisers

S? = 717,
SZ = 7,74

ST = X1 X0 X35Xy

0.) = |0000) -

1.) = |0001) -

Logical basis states

1111)
1110)

1 - Experimental encoding

1 logical qubit

Logical Z- and
X-operators

T = 7174
T+ = X,

Encoded superposition state

W) = cos(a/2)|0r) +isin(or/2) [1L)




4 - Recovery of the encoded qubit - code
reconstruction

o

o

Loss case: Recover logical qubit by code-switching to a reduced 3-qubit code

2 stabilisers

SZ ' "
e @ undetermined $§

Logical Z- and
X-operators

Sx
1 4 3
T4 =T48{ = 7,7, &

4-qubitcode [ )  3-qubit code X —7X = X, v



Qubit loss and correction - the entire cycle

1) = = (0g) + 1)

V2 F =0.78(1)

1 0.80(2) 0.81(4) 0.80(2)

0 D =X =7
1 S

Pcs

0.95(1) 0.97(1)
fostsg

0.96(1)

0.02(2) . 0.04(4)

0.80(2)

0.13(1) 0.01(2)

expectation value




What we’ve seen

Outlook & Conclusions

B> Quantum error correcting codes can be realised in topological systems

> Losses can affect quantum computers but can be cured with success

P> We developed a scheme for detecting losses

e Platform independent
e Applicable to other codes

/ S = Z,73257
( S = X2 X3X5Xe

§Wb . 7. 7, 7.7,
SU — X, XXX,

8 = 7.7, 7.7~
S\ — XX X X



Thank you!






Innsbruck linear ion-trap QIP toolset

~

0 Sz, S,

€

3. multi-ion Mglmer-Sgrensen (MS) entangling gate

52= 000l 4 0(Vo® 1 oV

)

—i6S2

... fidelity > 99.3 % for 2 qubits, Benhelm et al. Nat. Phys. 4, 463 (2008)
... 14-qubit entanglement, T. Monz et al. PRL 106,130506 (2011)

e )
1. Individual light-shift gates ()
- J
©) (1) (2 |~
Uz ? o-z ? Jz €
J
b s,

p €
2. Collective rotations W@/ q - Z (%)
xr X
1

MS
00) — |11)

MS
11) —» |00)




2 - Qubit loss event

. Ioss

o

%

o

40Ca+

S1/2
w
10) Tunable loss from |0)

Coherent transfer 7r-pulse = 100 % loss probability
on ‘hiding’ transition



3 - QNP qubit loss detection

el

ancilla

code qubit



3 - QNV quH loss detection Mglmer-Sgrensen gate:

* Bichromatic laser field

QND loss detection » Two-photon resonant
P process
ancilla |0)— <~  —72
e Ry ()
code qubit =
If code qubit is lost
e . ancilla |[0)— -Rx(7)-|1)
) i
\ & B Si1/2/ code
—|0) qubit
If code qubit is not lost
Dsjo — ancilla |0) - - - |0) :> No loss detected
& | Ry(m) Ry ()
_5/2—'.'|1> 5 code 45) - * ] * — |op)
\_ —1/27 1/2/ qubit

€-|0)



4 - Recovery of the encoded qubit - code reconstruction

o

r--
|
|
1
1
|
|
|
1
|
|
1
]

o

If loss detected: Code reconstruction
by measuring

Muller et al., New J. Phys 13, 085007 (2011)



Qubit losses

Motivation:
Losses and leakage can damage the performance of (topological) QEC codes

Challenges:
A
* Find protocols to deal with qubit loss q.\ \
* Understand robustness of codes used _ ® e
- Particle . ® v
 Develop and experimentally test I [ '. "
in-situ leakage loss detection and S . ¢
correction protocols \ v
Different incarnations of qubit loss: ——
|()::'_0__ % ~Jnr’::,-r \Ni
—A -3 D ot ¥
s Imperfect o D,
N R A oo
a 1 hiding’ i Ll population
1) — 1 S (hiding’) oY 2 leakage



