# Fighting Qubit Loss in Topological Quantum Memories

Davide Vodola Department of Physics and Astronomy Bologna University

Bologna, 19/12/2019

#### Quantum info and simulation lab

#### Where this work started...



Roman Stricker Philipp Schindler Thomas Monz

Rainer Blatt

### Outline of the talk

#### 1 - Brief introduction to topological quantum memories: Kitaev's Toric Code





#### 2 - Qubit Loss Error Correction: Theory and Experiment







a computer ... which works based on the laws of **quantum physics** 

- Central ingredients:
- quantum superposition principle
- quantum mechanical entanglement

### A quantum computer is ...



```
Basic unit in quantum information:

two-level system = quantum bit (qubit) When the system = |1\rangle is |\psi\rangle = c_0|0\rangle + c_1|1\rangle is |\psi\rangle = c_0|0\rangle + c_1|1\rangle is c_0, c_1 \in \mathbb{C} is c_0, c_1 \in \mathbb{C}
```

Where?

- spins of electrons
- two energy levels of atoms/ions
- polarization states of photons
- Josephson junctions

# Why should we build a large-scale and fault-tolerant quantum computer?



### Main obstacle towards quantum computers: decoherence & errors

#### Coupling to the environment causes decoherence



#### Examples

### **1. Magnetic field fluctuations** $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$ quantum state

dephasing

$$ho = |lpha_0|^2 |0
angle \langle 0| + |lpha_1|^2 |1
angle \langle 1| \,\,$$
 classical state

### Main obstacle towards quantum computers: decoherence & errors

Coupling to the environment causes decoherence





Classical world: protection by redundancy



...011010...















• Qubits • on the links / bonds of a 2D square lattice





• Qubits on the links / bonds of a 2D square lattice



• 2 types of stabilisers

 $|0\rangle$ 





• Qubits • on the links / bonds of a 2D square lattice



• 2 types of stabilisers

 $S_z = ZZZZ$ 

 $|0\rangle$ 











Logical info Errors

#### • X type error will anticommute with the Z-type stabilizers

$$S_z |\psi_L\rangle = +|\psi_L\rangle \qquad S_x |\psi_L\rangle = +|\psi_L\rangle$$





• X type error will anticommute with the Z-type stabilizers

• Z type error will anticommute with the X-type stabilizers

code space

Errors

Logical info



 $|\overline{0}
angle|\overline{0}
angle$   $|\overline{0}
angle|\overline{1}
angle$   $|\overline{1}
angle|\overline{0}
angle$   $|\overline{1}
angle|\overline{1}
angle$ 

logical states



- must commute with all stabilisers
- must be independent
- must respect the anticommutation relations e.g.  $\{\bar{X}_1, \bar{Z}_1\} = 0$

# Logical qubits







- must commute with all stabilisers
- must be independent
- must respect the anticommutation relations e.g.  $\{\bar{X}_1, \bar{Z}_1\} = 0$

# Logical qubits







- must commute with all stabilisers
- must be independent
- ▶ must respect the anticommutation relations e.g.  $\{\bar{X}_1, \bar{Z}_1\} = 0$

# Logical qubits







- must commute with all stabilisers
- must be independent
- must respect the anticommutation relations e.g.  $\{\bar{X}_1, \bar{Z}_1\} = 0$

## Logical qubits







- must commute with all stabilisers
- must be independent
- ▶ must respect the anticommutation relations e.g.  $\{\bar{X}_1, \bar{Z}_1\} = 0$

# Logical qubits







- must commute with all stabilisers
- must be independent
- ▶ must respect the anticommutation relations e.g.  $\{\bar{X}_1, \bar{Z}_1\} = 0$

# Logical qubits







- must commute with all stabilisers
- must be independent
- ▶ must respect the anticommutation relations e.g.  $\{\bar{X}_1, \bar{Z}_1\} = 0$

# Logical qubits





Logical operators = strings that percolate through the lattice and change the logical state in the code space



- must commute with all stabilisers
- must be independent
- ▶ must respect the anticommutation relations e.g.  $\{\bar{X}_1, \bar{Z}_1\} = 0$

# Logical qubits





Logical operators = strings that percolate through the lattice and change the logical state in the code space





### Qubit losses in the toric code





### Qubit losses in the toric code

T. Stace, S. Barrett, A. Doherty, PRL **102**, 200501 (2009) PRA **81**, 022317 (2010)



The loss affects





### Qubit losses in the toric code

T. Stace, S. Barrett, A. Doherty, PRL **102**, 200501 (2009) PRA **81**, 022317 (2010)



#### The loss affects

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

![](_page_33_Picture_0.jpeg)

### Qubit losses in the toric code

![](_page_33_Figure_4.jpeg)

![](_page_33_Picture_5.jpeg)

![](_page_34_Picture_0.jpeg)

### Qubit losses in the toric code

![](_page_34_Figure_4.jpeg)

![](_page_35_Picture_0.jpeg)

### Qubit losses in the toric code

![](_page_35_Figure_4.jpeg)

![](_page_36_Figure_0.jpeg)

What about the logical operators?

Use stabilisers to deform logical operators that go through the lost qubits

![](_page_36_Picture_4.jpeg)

avoid the positions of losses

**Action on logical states:** 

 $\bar{Z}|\psi_L\rangle$ 

![](_page_37_Figure_0.jpeg)

What about the logical operators?

Use stabilisers to **deform logical operators** that go through the lost qubits

avoid the positions of losses

#### Action on logical states:

$$\bar{Z}|\psi_L\rangle$$
$$= \bar{Z}S_z|\psi_L\rangle$$

![](_page_38_Figure_0.jpeg)

**Action on logical states:** 

 $\begin{aligned} \bar{Z}|\psi_L\rangle \\ = \bar{Z}S_z|\psi_L\rangle \\ = \bar{Z}'|\psi_L\rangle \end{aligned}$ 

### Qubit losses in the toric code

What about the logical operators?

Use stabilisers to **deform logical operators** that go through the lost qubits

avoid the positions of losses

**Example:** 

 $\begin{aligned} \sigma_1^z \sigma_2^z \sigma_3^z |\psi_L\rangle \\ = (\sigma_1^z \sigma_2^z \sigma_3^z) (\sigma_2^z \sigma_4^z \sigma_5^z \sigma_6^z) |\psi_L\rangle \\ = \sigma_1^z \sigma_4^z \sigma_5^z \sigma_6^z \sigma_3^z |\psi_L\rangle \end{aligned}$ 

![](_page_39_Figure_0.jpeg)

**Action on logical states:** 

 $\bar{Z}|\psi_L\rangle$ 

$$= \bar{Z}S_z |\psi_L\rangle$$

 $= \bar{Z}' |\psi_L\rangle$ 

Qubit losses in the toric code

What about the logical operators?

Use stabilisers to deform logical operators that go through the lost qubits

avoid the positions of losses

**Example:** 

 $\sigma_1^z \sigma_2^z \sigma_3^z |\psi_L\rangle$  $= (\sigma_1^z \sigma_2^z \sigma_3^z) (\sigma_2^z \sigma_4^z \sigma_5^z \sigma_6^z) |\psi_L\rangle$  $=\sigma_1^z \sigma_4^z \sigma_5^z \sigma_6^z \sigma_3^z |\psi_L\rangle$ 

How many losses can be tolerated?

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Figure_1.jpeg)

qubit loss probability p

![](_page_45_Figure_0.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

qubit loss probability p

![](_page_46_Figure_0.jpeg)

![](_page_46_Figure_1.jpeg)

### 2 -Qubit Loss Error Correction: Theory and Experiment

![](_page_47_Figure_1.jpeg)

2 - Qubit Loss Error Correction: Theory and Experiment

#### Goal

Provide a toolbox for correcting losses in generic quantum codes
 Detect if the loss has happened
 Decide if correcting or not the code

• Devise the smallest example in a trapped ion setup

![](_page_48_Picture_4.jpeg)

R. Stricker, DV, M. Ringbauer, P. Schindler, T. Monz, M. Müller, R. Blatt Deterministic correction of qubit loss, in preparation

### Experimental qubit loss detection and correction: The whole picture

![](_page_49_Figure_1.jpeg)

#### Experimental qubit loss detection and correction: The whole picture Ask me about the rest loss case $\ket{0}$ **QND** loss Induce detection $|0\rangle$ loss $|0\rangle$ Code Encoding reconstruction $|0\rangle$ |0 angleΖ $S_1^Z$ $S_2^Z$ **Minimal example** 2 $S_1^{X}$ 3 4 physical qubits

#### **Minimal example**

#### 4 physical qubits

#### 3 stabilisers

 $S_1^Z = Z_1 Z_2$  $S_2^Z = Z_1 Z_3$  $S_1^X = X_1 X_2 X_3 X_4$ 

![](_page_51_Picture_4.jpeg)

### 1 - Experimental encoding

1 logical qubit Logical Z- and X-operators

$$T^Z = Z_1 Z_4$$

$$T^X = X_4$$

Logical basis states  $|0_L\rangle = |0000\rangle + |1111\rangle$  $|1_L\rangle = |0001\rangle + |1110\rangle$  Encoded superposition state  $|\psi_L\rangle = \cos(\alpha/2) |0_L\rangle + i \sin(\alpha/2) |1_L\rangle$ 

### 4 - Recovery of the encoded qubit - code reconstruction

![](_page_52_Figure_1.jpeg)

Loss case: Recover logical qubit by code-switching to a reduced 3-qubit code

2 stabilisers

![](_page_52_Figure_4.jpeg)

$$\tilde{S}_{1}^{Z} = S_{1}^{Z}S_{2}^{Z} = Z_{2}Z_{3}$$

 $\tilde{S}_1^X = X_1 X_2 X_3$  undetermined

Logical Z- and X-operators

 $\tilde{T}^Z = T^Z S_1^Z = Z_2 Z_4 \quad \checkmark$ 

 $\tilde{T}^X = T^X = X_A$ 

![](_page_52_Picture_10.jpeg)

### Qubit loss and correction - the entire cycle

![](_page_53_Figure_1.jpeg)

### Outlook & Conclusions

Quantum error correcting codes can be realised in topological systems

Losses can affect quantum computers but can be cured with success

We developed a scheme for detecting losses

- Platform independent
- Applicable to other codes

![](_page_54_Figure_7.jpeg)

# Thank you!

![](_page_57_Figure_0.jpeg)

... fidelity > 99.3 % for 2 qubits, Benhelm *et al.* Nat. Phys. **4**, 463 (2008) ... 14-qubit entanglement, T. Monz *et al.* PRL **106**,130506 (2011)

## 2 - Qubit loss event

![](_page_58_Figure_1.jpeg)

### 3 - QNP qubit loss detection

![](_page_59_Figure_1.jpeg)

## 3 - QND qubit loss detection

#### **Mølmer-Sørensen gate:**

![](_page_60_Figure_2.jpeg)

• Two-photon resonant process

![](_page_60_Figure_4.jpeg)

### 4 - Recovery of the encoded qubit - code reconstruction

![](_page_61_Figure_1.jpeg)

Müller et al., New J. Phys 13, 085007 (2011)

## **Qubit losses**

#### Motivation:

Losses and leakage can damage the performance of (topological) QEC codes

 $4^2 S_{1/2}$ 

### Challenges:

- Find protocols to deal with qubit loss
- Understand **robustness** of codes used
- Develop and experimentally test in-situ leakage loss detection and correction protocols

![](_page_62_Figure_7.jpeg)

leakage

### Different incarnations of qubit loss:

![](_page_62_Figure_9.jpeg)

Imperfect spectroscopic decoupling ('hiding')