<u>Tree Tensor Networks approach</u> <u>for Lattice Gauge Theories</u>

Giuseppe Magnifico University of Padova

HPC and Quantum Computing Workshop - December 15, 2020

arXiv:2011.10658

in collaboration with:

TIMO FELSER – University of Padova PIETRO SILVI – University of Innsbruck SIMONE MONTANGERO – University of Padova

2) Local symmetries, e.g. Gauss's law in QED

e

$$\nabla \cdot \mathbf{E} = \rho$$

2) Local symmetries, e.g. Gauss's law in QED

$$\nabla \cdot \mathbf{E} = \rho$$

e

2) Local symmetries, e.g. Gauss's law in QED

$$\nabla \cdot \mathbf{E} = \rho$$

2) Local symmetries, e.g. Gauss's law in QED

$$\nabla \cdot \mathbf{E} = \rho$$

-e

2) Local symmetries, e.g. Gauss's law in QED

$$\nabla \cdot \mathbf{E} = \rho$$

e

LGT are ubiquitous theoretical framework!

- They are **extremely demanding** from a numerical point of view.
- Ideal goal for HPC and Quantum Simulation/Computation!

- They are extremely demanding from a numerical point of view.
- Ideal goal for HPC and Quantum Simulation/Computation!

2016: U(1) on quantum computers

Nature **534,** 516–519 (2016).

Simulating Lattice Gauge Theories within Quantum Technologies

M.C. Bañuls^{1,2}, R. Blatt^{3,4}, J. Catani^{5,6,7}, A. Celi^{3,8}, J.I. Cirac^{1,2}, M. Dalmonte^{9,10}, L. Fallani^{5,6,7}, K. Jansen¹¹, M. Lewenstein^{8,12,13}, S. Montangero^{7,14} ^a, C.A. Muschik³, B. Reznik¹⁵, E. Rico^{16,17} ^b, L. Tagliacozzo¹⁸, K. Van Acoleyen¹⁹, F. Verstraete^{19,20}, U.-J. Wiese²¹, M. Wingate²², J. Zakrzewski^{23,24}, and P. Zoller³

Eur. Phys. J. D 74, 165 (2020)

Lattice QED in (3+1)D

$$\hat{H} = -t \sum_{x,\mu} \left(\hat{\psi}_x^{\dagger} \, \hat{U}_{x,\mu} \, \hat{\psi}_{x+\mu} + \text{H.c.} \right)$$
$$+m \sum_x (-1)^x \hat{\psi}_x^{\dagger} \hat{\psi}_x + \frac{g_e^2}{2} \sum_{x,\mu} \hat{E}_{x,\mu}^2$$
$$\frac{g_m^2}{2} \sum_x \left(\Box_{\mu_x,\mu_y} + \Box_{\mu_x,\mu_z} + \Box_{\mu_y,\mu_z} + \text{H.c.} \right)$$

$$\Box_{\mu_x,\mu_y} = U_{x,\mu_x} U_{x+\mu_x,\mu_y} U_{x+\mu_y,\mu_x}^{\dagger} U_{x,\mu_y}^{\dagger}$$

Lattice QED in (3+1)D

$$\hat{H} = -t \sum_{x,\mu} \left(\hat{\psi}_x^{\dagger} \, \hat{U}_{x,\mu} \, \hat{\psi}_{x+\mu} + \text{H.c.} \right)$$
$$+m \sum_x (-1)^x \hat{\psi}_x^{\dagger} \hat{\psi}_x + \frac{g_e^2}{2} \sum_{x,\mu} \hat{E}_{x,\mu}^2$$
$$\frac{g_m^2}{2} \sum_x \left(\Box_{\mu_x,\mu_y} + \Box_{\mu_x,\mu_z} + \Box_{\mu_y,\mu_z} + \text{H.c.} \right)$$

Quantum Link Model discretization of Gauge Fields

$$\hat{G}_x = \hat{\psi}_x^{\dagger} \hat{\psi}_x - \frac{1 - p_x}{2} - \sum_{\mu} \hat{E}_{x,\mu} \qquad \qquad \hat{G}_x |\Phi\rangle = 0 \; \forall x$$

Quantum Simulation model

$$dimH_x = 267$$

just for comparison, like a spin system with s = 133

Tree Tensor Networks in 3D

$$\rho L^{\frac{\beta}{\nu}} = \lambda \left(L^{\frac{1}{\nu}} (m - m_c) \right)$$

 $m_c = -0.39 \\ \beta = 0.16 \quad \nu = 0.22$

Local configurations of matter and gauge fields

$$-2m \gg g_e^2/2 > 0$$

Charge-Crystal Phase: particle-antiparticle dimers

 $g_e^2/2 \gg 2|m|$

Vacuum phase: no particles, no field excitations

 n_{x-even}

$$\rho L^{\frac{\beta}{\nu}} = \lambda \left(L^{\frac{1}{\nu}} (m - m_c) \right)$$

 $m_c = +0.22 \\ \beta = 0.16 \quad \nu = 0.22$

Confinement Properties

$$\hat{H} = -t \sum_{x,\mu} \left(\hat{\psi}_x^{\dagger} \, \hat{U}_{x,\mu} \, \hat{\psi}_{x+\mu} + \text{H.c.} \right)$$
$$+m \sum_{x} (-1)^x \hat{\psi}_x^{\dagger} \hat{\psi}_x \left(+ \frac{g_e^2}{2} \sum_{x,\mu} \hat{E}_{x,\mu}^2 \right)$$
$$-\frac{g_m^2}{2} \sum_x \left(\Box_{\mu_x,\mu_y} + \Box_{\mu_x,\mu_z} + \Box_{\mu_y,\mu_z} + \text{H.c.} \right)$$
Plaquette terms

Strong-coupling

 g_e

Weak-coupling

Confinement Properties

Confinement Properties

Finite Density

$$L = 4 , Q = 16 , \rho = 1/4$$

$$L = 8, Q = 128, \rho = 1/4$$

 $\sigma(l) = \frac{1}{A(l)} \sum_{x \in A(l)} \left\langle \hat{\psi}_x^{\dagger} \hat{\psi}_x \right\rangle$

What's next?

Quantum Matter Physics

High-Energy Physics domain

- Testing and validating experimental implementations on quantum hardware.
- Non-Abelian symmetries (QCD).
- Exploit TTN algorithms to simulate phenomena of high-energy physics relevance, such as real-time dynamics and scattering.

THANK YOU