Machine learning for Quantum Noise Benchmarking

This work is licensed under a Creative Commons Attribution 4.0 International License

2 Setting definition

3 Machine Learning

4 Results

Stefano Martina (University of Florence)

✓ We consider a Quantum Random Walker on a complex graph

- perturbed by noise
- Discriminate quantum noise, by measuring only walker populations
 - Support Vector Machines
 - Recurrent Neural Networks
- The dynamic parameters are crucial to the classification capacity
 - \blacktriangleright short evolution time / high frequency \longrightarrow easy
 - Iong evolution time / low frequency \longrightarrow hard
- ✓ Over 90% accuracy in classification between
 - two IID noises –
 - two coloured noises
 - one IID VS one coloured noises -

- ✓ We consider a Quantum Random Walker on a complex graph
 - perturbed by noise
- Discriminate quantum noise, by measuring only walker populations
 - Support Vector Machines
 - Recurrent Neural Networks
- The dynamic parameters are crucial to the classification capacity

15 December 2020

3

- \blacktriangleright short evolution time / high frequency \longrightarrow easy
- Iong evolution time / low frequency \longrightarrow hard
- ✓ Over 90% accuracy in classification between
 - two IID noises –
 - two coloured noises
 - one IID VS one coloured noises -

- ✓ We consider a Quantum Random Walker on a complex graph
 - perturbed by noise
- Discriminate quantum noise, by measuring only walker populations
 - Support Vector Machines
 - Recurrent Neural Networks
- The dynamic parameters are crucial to the classification capacity
 - \blacktriangleright short evolution time / high frequency \longrightarrow easy
 - ▶ long evolution time / low frequency \longrightarrow hard
- Over 90% accuracy in classification between
 - two IID noises -
 - two coloured noises
 - one IID VS one coloured noises -

- ✓ We consider a Quantum Random Walker on a complex graph
 - perturbed by noise
- Discriminate quantum noise, by measuring only walker populations
 - Support Vector Machines
 - Recurrent Neural Networks
- The dynamic parameters are crucial to the classification capacity
 - short evolution time / high frequency \longrightarrow easy
 - ▶ long evolution time / low frequency \longrightarrow hard
- ✓ Over 90% accuracy in classification between
 - two IID noises ————
 - two coloured noises
 - one IID VS one coloured noises –

easier

Stefano Martina (University of Florence)

Stefano Martina (University of Florence)

 Is December 2020
 Is December 2020

日本《國本《日本《日

Stefano Martina (University of Florence)

日本《國本《日本《日

Stefano Martina (University of Florence)

15 December 2020 4

э

< E

Example

✓ Example of populations with $t_{15} = 0.1$

	$P_{t_k}^{(35)}$	$\mathcal{P}_{t_k}^{(36)}$	$\mathcal{P}_{t_k}^{(37)}$	$P_{t_k}^{(38)}$	$\mathcal{P}_{t_k}^{(39)}$	$\mathcal{P}_{t_k}^{(40)}$
t_0	0.00	0.00	0.00	0.00	1.00	0.00
t_1	0.00	0.00	0.00	0.00	0.99	0.00
t_2	0.00	0.00	0.00	0.00	0.93	0.00
t ₃	0.00	0.00	0.01	0.01	0.85	0.01
t ₄	0.00	0.01	0.01	0.01	0.78	0.01
t_5	0.01	0.01	0.01	0.01	0.69	0.01
t_6	0.01	0.02	0.01	0.01	0.63	0.00
t7	0.01	0.02	0.01	0.01	0.57	0.00
t_8	0.01	0.02	0.01	0.01	0.52	0.00
t_9	0.02	0.02	0.01	0.01	0.45	0.00
t_{10}	0.02	0.02	0.02	0.02	0.37	0.01
t_{11}	0.01	0.02	0.02	0.03	0.29	0.01
t_{12}	0.01	0.01	0.03	0.04	0.20	0.02
t_{13}	0.01	0.01	0.04	0.04	0.14	0.01
t_{14}	0.01	0.02	0.04	0.05	0.08	0.01
t_{15}	0.01	0.02	0.04	0.05	0.06	0.01

✓ Example of populations with $t_{15} = 1$

	$P_{t_k}^{(35)}$	$\mathcal{P}_{t_k}^{(36)}$	$\mathcal{P}_{t_k}^{(37)}$	$P_{t_k}^{(38)}$	$P_{t_k}^{(39)}$	$\mathcal{P}_{t_k}^{(40)}$
t_0	0.00	0.00	0.00	0.00	1.00	0.00
t_1	0.02	0.02	0.01	0.01	0.45	0.00
t_2	0.01	0.01	0.02	0.03	0.05	0.02
t_3	0.00	0.00	0.00	0.00	0.13	0.02
t4	0.02	0.01	0.01	0.01	0.12	0.02
t_5	0.01	0.01	0.03	0.03	0.06	0.01
t_6	0.01	0.01	0.01	0.01	0.01	0.00
t7	0.04	0.03	0.01	0.06	0.11	0.00
t_8	0.04	0.00	0.03	0.11	0.11	0.03
t_9	0.03	0.00	0.03	0.01	0.01	0.10
t_{10}	0.05	0.01	0.01	0.04	0.08	0.04
t_{11}	0.01	0.03	0.02	0.00	0.08	0.02
t_{12}	0.00	0.05	0.02	0.04	0.00	0.06
t_{13}	0.01	0.03	0.00	0.02	0.05	0.07
t_{14}	0.00	0.00	0.00	0.01	0.12	0.00
t15	0.00	0.00	0.01	0.04	0.10	0.01

Model

$$\hat{\mathbf{y}} = f(\mathbf{x}; \theta, \xi)$$

- \checkmark f non-linear function parametrized with
 - parameters θ (modified during training)
 - hyperparameters ξ (define different configurations)

Target

$$heta^* = rgmin_{ heta} \mathcal{L}_{\mathcal{D}}(heta, \xi)$$

Theoretical risk function

$$L_{\mathcal{D}}(\theta,\xi) \equiv \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathcal{D}}\left[\ell\left(f(\mathbf{x};\theta,\xi),\mathbf{y}\right)\right]$$

$\checkmark \mathcal{D}$ is unknown

Stefano Martina (University of Florence)

 Is December 2020
 7

Learning II

Target

$$\theta^* = \operatorname*{arg\,min}_{\theta} L_{\mathcal{S}}(\theta, \xi)$$

Empirical risk function

$$L_{\mathcal{S}}(\theta,\xi) = \frac{1}{|\mathcal{S}|} \sum_{(\mathbf{x},\mathbf{y})\in\mathcal{S}} \ell(f(\mathbf{x};\theta,\xi),\mathbf{y})$$

✓ $S = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ training dataset

✓ Monitor $L_{S'}(\theta, \xi)$ on validation set $S' \neq S$

- Detect overfitting
- Tune hyperparameters ξ

✓ Report $L_{S''}(\theta, \xi)$ (and metrics) on test set $S'' \neq S' \neq S$

Learning II

Target

$$\theta^* = \operatorname*{arg\,min}_{ heta} L_{\mathcal{S}}(heta, \xi)$$

Empirical risk function

$$L_{S}(\theta,\xi) = \frac{1}{|S|} \sum_{(\mathbf{x},\mathbf{y})\in S} \ell\left(f(\mathbf{x};\theta,\xi),\mathbf{y}\right)$$

✓ $S = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ training dataset

✓ Monitor $L_{S'}(\theta, \xi)$ on validation set $S' \neq S$

- Detect overfitting
- Tune hyperparameters ξ

✓ Report $L_{S''}(\theta, \xi)$ (and metrics) on test set $S'' \neq S' \neq S$

イロト イヨト イヨト

Learning II

Target

$$\theta^* = \operatorname*{arg\,min}_{\theta} L_{\mathcal{S}}(\theta, \xi)$$

Empirical risk function

$$L_{S}(\theta,\xi) = \frac{1}{|S|} \sum_{(\mathbf{x},\mathbf{y})\in S} \ell\left(f(\mathbf{x};\theta,\xi),\mathbf{y}\right)$$

✓ $S = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_N, \mathbf{y}_N)\}$ training dataset

✓ Monitor $L_{S'}(\theta, \xi)$ on validation set $S' \neq S$

- Detect overfitting
- Tune hyperparameters ξ

✓ Report $L_{S''}(\theta, \xi)$ (and metrics) on test set $S'' \neq S' \neq S$

Image: A match a ma

Support Vector Machines

Multi Layer Perceptron

$$\hat{y} \equiv \sigma(\mathbf{w}^T \cdot \mathbf{x} + b)$$

$$\mathbf{h}[0] \equiv \mathbf{x}$$

$$\mathbf{h}[l] \equiv \sigma \left(W[l]^T \cdot \mathbf{h}[l-1] + \mathbf{b}[l] \right)$$

$$\hat{\mathbf{y}} \equiv \mathbf{h}[L]$$

• • • • • • • • • •

Stefano Martina (University of Florence)

э

э

Multi Layer Perceptron

$$\hat{y} \equiv \sigma(\mathbf{w}^T \cdot \mathbf{x} + b)$$

$$\begin{aligned} \mathbf{h}[0] &\equiv \mathbf{x} \\ \mathbf{h}[l] &\equiv \sigma \left(W[l]^T \cdot \mathbf{h}[l-1] + \mathbf{b}[l] \right) \\ \hat{\mathbf{y}} &\equiv \mathbf{h}[L] \end{aligned}$$

A □ > < 同 > < 三</p>

э

Loss

Categorical Cross Entropy

$$\ell(\hat{\mathbf{y}},\mathbf{y}) = -\sum_{j=1}^{O} y^{(j)} \log \hat{y}^{(j)}$$

Common used in classification tasks

Measure distance between two probability distributions

- $\mathbf{\hat{y}}$ needs to be a probability distributions
- obtained with softmax function:

$$\sigma^{(i)}(\mathbf{z}) \equiv \frac{e^{z^{(i)}}}{\sum_{j=1}^{O} e^{z^{(j)}}}$$

Stefano Martina (University of Florence)

イロト イヨト イヨト

Loss

Categorical Cross Entropy

$$\ell(\hat{\mathbf{y}},\mathbf{y}) = -\sum_{j=1}^{O} y^{(j)} \log \hat{y}^{(j)}$$

Common used in classification tasks

Measure distance between two probability distributions

- $\hat{\mathbf{y}}$ needs to be a probability distributions
- obtained with softmax function:

$$\sigma^{(i)}(\mathbf{z}) \equiv \frac{e^{\mathbf{z}^{(i)}}}{\sum_{j=1}^{O} e^{\mathbf{z}^{(j)}}}$$

Stefano Martina (University of Florence)

(人間) トイヨト イヨト

Optimization

Stochastic Gradient Descent

$$\theta_i = \theta_{i-1} - \eta \nabla_{\theta} \mathcal{L}_{\mathcal{S}_b}(\theta_{i-1}, \xi)$$

 $\checkmark \eta$ is the learning rate

- Can also be adaptively updated (e.g. ADAM)
- \checkmark S_b is a minibatch

(日)

Optimization

Stochastic Gradient Descent

$$\theta_i = \theta_{i-1} - \eta \nabla_{\theta} \mathcal{L}_{\mathcal{S}_b}(\theta_{i-1}, \xi)$$

$\checkmark \eta$ is the learning rate

- Can also be adaptively updated (e.g. ADAM)
- \checkmark S_b is a minibatch

イロト イヨト イヨト イヨ

Optimization

Stochastic Gradient Descent

$$\theta_i = \theta_{i-1} - \eta \nabla_{\theta} \mathcal{L}_{\mathcal{S}_b}(\theta_{i-1}, \xi)$$

$\checkmark \eta$ is the learning rate

- Can also be adaptively updated (e.g. ADAM)
- \checkmark S_b is a minibatch

→ < ∃ →</p>

Unidirectional Recurrent Neural Network (RNN)

Used on sequential data

Processed iteratively by non-linear function r

- r parametrized with shared set of weights θ_r
- **h**_t sort of memory

 \checkmark **h**_{au} representation of all the sequence

• In classification \mathbf{h}_{τ} can be processed by MLP f

Unidirectional RNN

- ✓ Used on sequential data
- \checkmark Processed iteratively by non-linear function r
 - r parametrized with shared set of weights θ_r
 - h_t sort of memory
- **v** \mathbf{h}_{τ} representation of all the sequence
 - In classification \mathbf{h}_{τ} can be processed by MLP f

Unidirectional RNN

- ✓ Used on sequential data
- \checkmark Processed iteratively by non-linear function r
 - r parametrized with shared set of weights θ_r
 - h_t sort of memory
- ✓ \mathbf{h}_{τ} representation of all the sequence
 - In classification \mathbf{h}_{τ} can be processed by MLP f

$\mathsf{GRU}/\mathsf{LSTM}$

Stefano Martina (University of Florence)

3

GRU/LSTM

э

Stefano Martina (University of Florence)

Stefano Martina (University of Florence)

Aggregation

$$\mathbf{u}_t = \mathbf{h}_t[L] \oplus \widetilde{\mathbf{h}}_t[L]$$
$$\mathbf{a}^{(j)} = \max_t \mathbf{u}_t^{(j)}$$

$$\mathbf{u}_{t} = \mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L]$$
$$\mathbf{v}_{t} = \tanh\left(\mathbf{W}^{T} \cdot \mathbf{u}_{t} + \mathbf{b}\right)$$
$$\alpha_{t} \equiv \frac{e^{\langle \mathbf{v}_{t}, \mathbf{c} \rangle}}{\sum_{j=1}^{\tau} e^{\langle \mathbf{v}_{j}, \mathbf{c} \rangle}}$$
$$\mathbf{a} \equiv \sum_{t=1}^{\tau} \alpha_{t} \mathbf{u}_{t}$$

イロト イポト イヨト イヨト

Aggregation

Standard

$$\mathbf{a} = \mathbf{h}_t[\mathcal{L}] \oplus \widetilde{\mathbf{h}}_1[\mathcal{L}]$$
Max pooling

$$\mathbf{u}_t = \mathbf{h}_t[\mathcal{L}] \oplus \widetilde{\mathbf{h}}_t[\mathcal{L}]$$

$$\mathbf{a}^{(j)} = \max_t \mathbf{u}^{(j)}_t$$

Attention mechanism

$$\mathbf{u}_{t} = \mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L]$$
$$\mathbf{v}_{t} = \tanh\left(\mathbf{W}^{T} \cdot \mathbf{u}_{t} + \mathbf{b}\right)$$
$$\alpha_{t} \equiv \frac{e^{\langle \mathbf{v}_{t}, \mathbf{c} \rangle}}{\sum_{j=1}^{\tau} e^{\langle \mathbf{v}_{j}, \mathbf{c} \rangle}}$$
$$\mathbf{a} \equiv \sum_{t=1}^{\tau} \alpha_{t} \mathbf{u}_{t}$$

(日) (圖) (문) (문) (문)

Aggregation

Standard

$$\mathbf{a} = \mathbf{h}_t[\mathcal{L}] \oplus \widetilde{\mathbf{h}}_1[\mathcal{L}]$$
Max pooling

$$\mathbf{u}_t = \mathbf{h}_t[\mathcal{L}] \oplus \widetilde{\mathbf{h}}_t[\mathcal{L}]$$

$$\mathbf{a}^{(j)} = \max_t \mathbf{u}^{(j)}_t$$

Attention mechanism

$$\mathbf{u}_{t} = \mathbf{h}_{t}[L] \oplus \widetilde{\mathbf{h}}_{t}[L]$$
$$\mathbf{v}_{t} = \tanh\left(\mathbf{W}^{T} \cdot \mathbf{u}_{t} + \mathbf{b}\right)$$
$$\alpha_{t} \equiv \frac{e^{\langle \mathbf{v}_{t}, \mathbf{c} \rangle}}{\sum_{j=1}^{\tau} e^{\langle \mathbf{v}_{j}, \mathbf{c} \rangle}}$$
$$\mathbf{a} \equiv \sum_{t=1}^{\tau} \alpha_{t} \mathbf{u}_{t}$$

		t	$t_{15} = 0.$	1		$t_{15} = 1$	
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	<u>50.3</u>	51.2	49.5
${\cal P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	50.2
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM		90.4	96.4	88.6	70.3	86.3
\mathcal{P}_{\star}	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
\mathcal{D}_{\star}	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
, t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

✓ Paper in submission: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning approach for quantum non-Markovian noise classification

Stefano Martina (University of Florence)

		t	$t_{15} = 0.$	1		$t_{15} = 1$	
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	50.3	51.2	49.5
${\cal P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	<u>50.2</u>
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM		90.4	96.4	88.6	70.3	86.3
\mathcal{D}_{+}	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
r_0	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
\mathcal{D}_{+}	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
, τ ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

Paper in submission: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning approach for quantum non-Markovian noise classification

Stefano Martina (University of Florence)

		t	$t_{15} = 0.$	1		$t_{15} = 1$	
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	<u>50.3</u>	51.2	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	<u>50.2</u>
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM		90.4	96.4	88.6	70.3	86.3
\mathcal{D}_{+}	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
r_0	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
\mathcal{D}_{\cdot}	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
r_{15}	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

✓ Paper in submission: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning approach for quantum non-Markovian noise classification

Stefano Martina (University of Florence)

		t	$t_{15} = 0.$	1	$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	<u>50.3</u>	51.2	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	96.6	49.5	50.7	50.2
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	96.7	90.5	73.3	88.2
	LSTM		90.4	96.4	88.6	70.3	86.3
\mathcal{D}_{i}	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
$, t_0,$	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
\mathcal{P}_{\star}	bi-GRU-att	97.0	91.6	96.1	90.9	73.4	87.9
, t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

✓ Paper in submission: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning approach for quantum non-Markovian noise classification

Stefano Martina (University of Florence)

		t	$t_{15} = 0.$	1		$t_{15} = 1$	
		IID	NM	VS	IID	NM	VS
	SVM	<u>97.0</u>	82.3	96.5	<u>50.3</u>	51.2	49.5
${\cal P}_{t_{15}}$	MLP	96.9	80.7	<u>96.6</u>	49.5	50.7	50.2
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	<u>96.7</u>	90.5	73.3	88.2
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3
$\mathcal{P}_{t_{1}}$	bi-GRU	96.6	92.2	96.6	91.0	74.6	90.6
, 10,	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
\mathcal{P}_{t}	bi-GRU-att	<u>97.0</u>	91.6	96.1	90.9	73.4	87.9
, <i>t</i> ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	92.6	96.6	91.8	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

✓ Paper in submission: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning approach for quantum non-Markovian noise classification

Stefano Martina (University of Florence)

		t	$t_{15} = 0.$	1	$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	<u>97.0</u>	82.3	96.5	<u>50.3</u>	<u>51.2</u>	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	<u>96.6</u>	49.5	50.7	<u>50.2</u>
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	<u>96.7</u>	90.5	73.3	88.2
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3
\mathcal{D}_{\star}	bi-GRU	96.6	92.2	96.6	91.0	74.6	<u>90.6</u>
$, t_0,$	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
\mathcal{D}_{\star}	bi-GRU-att	<u>97.0</u>	91.6	96.1	90.9	73.4	87.9
, t ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	<u>92.6</u>	96.6	<u>91.8</u>	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

✓ Paper in submission: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning approach for quantum non-Markovian noise classification

Stefano Martina (University of Florence)

		t	$t_{15} = 0.$	1	$t_{15}=1$		
		IID	NM	VS	IID	NM	VS
	SVM	97.0	82.3	96.5	<u>50.3</u>	51.2	49.5
$\mathcal{P}_{t_{15}}$	MLP	96.9	80.7	<u>96.6</u>	49.5	50.7	<u>50.2</u>
	SVM	96.4	80.1	96.3	73.6	61.9	75.0
	GRU	96.5	91.5	<u>96.7</u>	90.5	73.3	88.2
	LSTM	96.8	90.4	96.4	88.6	70.3	86.3
\mathcal{P}_{\star}	bi-GRU	96.6	92.2	96.6	91.0	74.6	<u>90.6</u>
, 10,	bi-LSTM	96.7	89.7	96.5	90.8	70.6	87.2
\mathcal{P}_{t}	bi-GRU-att	<u>97.0</u>	91.6	96.1	90.9	73.4	87.9
, <i>L</i> ₁₅	bi-LSTM-att	96.9	87.9	96.3	89.0	71.6	87.4
	bi-GRU-max	96.6	<u>92.6</u>	96.6	<u>91.8</u>	76.1	90.4
	bi-LSTM-max	96.6	91.4	96.3	91.4	74.9	89.0

✓ Paper in submission: Stefano Martina, Stefano Gherardini and Filippo Caruso. Machine learning approach for quantum non-Markovian noise classification

We have many open postdoc positions on Quantum Machine Learning, Quantum Sensing, and more in general Quantum Information Theory in QDAB, starting at any time! If you are interested, contact Prof. Filippo Caruso: filippo.caruso@unifi.it — qdab.org

