Quantum Chemistry using Quantum Computers
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From the Molecular Hamiltonian to Qubits Hamiltonians

Molecular Hamiltonian with M nuclei, N electrons
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Hamiltonian in second quantization form

= X (x _V_2_ _ 4 X
hpq—/mp()( : ;|r_RI|>¢>q<>

H Z hpqa/ Qg + = Z hpqrsa a/ras B ¢;(X1)¢Z(X2)¢s(xl)¢r(x2)
hpgrs = /dxlde

p,q,7r,S8 ‘Xl—Xgl

Mapping the Fermion Fock space into qubits bosons by (for instance) store
the occupation number of an orbital in the |0>or |1> state of a qubit:

Linear combination of Slater Det. becames
|fM—17 R f0> — |QM—17 e ,C]0> superposition of qubit states

Hamiltonian in the qubit space as sum of Pauli matrices
H=cIII] +coZZIl +c3XZXZ + ...



Variational Quantum Eigensolver

+ Ansatz ? ()

Quantum Chemistry

Real Hardware
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* Variational principle  (y)(0)|H |1(0)) > Ej

where E, is the lowest energy eigenvalue of

the

Hamiltonian H, and 9 is a vector of parameters used to

construct the qubit state.

* Uses a classical computer to optimize the parameters 0

a guantum computer to measure the expectation value

and




Wave Function Ansatz inspired by Quantum Chemistry
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© Accurate @ Bad scaling for the number of gates



Wave Function Ansatz from heuristic approach

* The heuristic ansatz wavefunction is:

where R (J)
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is a rotation around axis y (generated by the Pauli

matrix Y) on all qubits, and U, Isan entangling block (CNOTs
between neighbors)
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© Very compact

® Lost of the chemical meaning



Variational Quantum Eigensolver

Fermionic problem Classical cost function
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The Variational Quantum Eigensolver
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The Variational Quantum Eigensolver

* The Hamiltonian is a sum of Pauli strings, each with its coefficient:
H=cIIIl+cxZZIl +c3XZXZ + ...
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* Pick one Pauli string to measure it:

H=c Il 4+ cZZI] +c3XZXZ + ...



The Variational Quantum Eigensolver

* The Hamiltonian is a sum of Pauli strings, each with its coefficient:
H=cIIIl+cZZIl +c3XZXZ + ...
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* Measure the Pauli string
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Non-unitary ansatz for VQE

w7 (9)) = T (6))

N v J \ ) \ v J

Non-unitary Non- Unitary
Wave unitary Wave
function Operator function

We can study non-unitary operators if we divide the expectation
value of the Hamiltonian by the normalization of the state. The
estimated energy on the state is now

(W ()| H|WT(6)) _ (¥(0)|JTHI|¥(H))

(W7 (0)[W7 () (W(0)]JTT1¥(H))

We use a Quantum Monte-Carlo inspired operator to introduce
some qubit correlation outside of the quantum computer; this
acts as a ‘projector’ reducing the contribution of unphysical
states



Jastrow operator

* The operator is inspired by the one-body and two-body Jastrow
factors

J=J + Js

N N
Jl = exXp | — Z CVZZZ Jo =exp | — Z )\ZJZfLZj
. i<j=1
* This would add an exponentially growing number of
measurements! So instead we use the linearization
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* This only adds a polinomial number of parameters (and additional
measurements)

Mazzola et al. PRL 123, 130501 (2019).



Procedure

* Choose a hardware efficient ansatz (rotations on each qubit,
blocks of entangling CNOTSs)

* Given a set of parameters (rotation angles), initialize the
wavefunction on the quantum computer

* Measure the Pauli strings composing JTf7.J and JtJ

* Calculate the expectation value _ {U(O)|JTHI|W(H))
(W (6)|J1T|(6))

* Optimize all the parameters together (the rotation angles and
the coefficients in the Jastrow operator) like in the normal VQE



Energy (Ep)

Ho, 8 qubits with 2 CNOT blocks

Distance (A)
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With variational Jastrow operator
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Eigenenergy

Dissociation curve for H,



Energy - Eigenenergy (Ep)

H», 8 qubits with 2 CNOT blocks
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H,O 8 qubits at equilibrium
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The improvement grows
with the number of
entangling blocks!
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Energy - Eigenenergy (Ep)
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The number of total parameters grows as
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The method works with all gubit mappings

Ho, 8 qubits, 2 CNOT blocks
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Conclusions

v () = T[(0))

Effective procedure to introduce non-unitary wavefunctions
in VQE

The advantage increases with the number of blocks of the
wave function

Results are robusts with respect to chemistry = qubits
mapping
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Shown here are Intel's 7-qubit, 17-qubit, and 49-qubit chips.

Spin-Qubit promise good miniaturization and scale up



Quantum Computing: present and future applications

QCs (QAs) exceed power of
classical computers

Scalable version of QC (QA)
completed and qualified in test

QTRL

Quantum Technology
Readiness Levels
describing the maturity
of Quantum Computing
Technology

D-Wave
quantum annealer

Prototype QC (QA) built solving
small but user-relevant problems
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* Linear Algebra

VOLUME 83, NUMBER 24 PHYSICAL REVIEW LETTERS 13 DECEMBER 1999

Quantum Algorithm Providing Exponential Speed Increase
for Finding Eigenvalues and Eigenvectors

Daniel S. Abrams*
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099

Seth Lloyd'

d’Arbeloff Laboratory for Information Sciences and Technology, Department of Mechanical Engineering, MIT 3-160,
Cambridge, Massachusetts 02139
(Received 27 July 1998)

We describe a new polynomial time quantum algorithm that uses the quantum fast Fourier transform
to find eigenvalues and eigenvectors of a local Hamiltonian, and that can be applied in cases (commonly
found in ab initio physics and chemistry problems) for which all known classical algorithms require
exponential time. Applications of the algorithm to specific problems are considered, and we find that
classically intractable and interesting problems from atomic physics may be solved with between 50 and
100 quantum bits.



e Optimization problems

Quantum speedup in solving the maximal-clique problem
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The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete
computational problem, which has potential applications ranging from electrical engineering, computational
chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-
clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where
the time and spatial complexities are reduced to, respectively, O(\/Z_") and O(n*). With respect to oracle-related
quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility
of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices
and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.



EU Quantum Technology Flagship 1.3 billions

euros up to 2028
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