Machine learning with hybrid quantum-classical systems

Andrea Mari

Thomas R. Bromley Josh Izaac Maria Schuld

Nathan Killoran

Quantum Computing and HPC – CINECA – Casalecchio di Reno, Bologna, Italy. – December 19th, 2019

Outline

Machine learning with variational quantum circuits

2 Quantum transfer learning

3 Classification of high-resolution images with QPUs

Outline

Machine learning with variational quantum circuits

2 Quantum transfer learning

3 Classification of high-resolution images with QPUs

Classical neural networks

Classical neural networks

Variational quantum circuits

Variational quantum circuits

Variational quantum neural networks

Variational quantum neural networks

"Dressing" a quantum circuit with two classical layers

Two advantages: 1) Complete flexibility in the number of inputs and outputs

2) Classical layers can "learn" how to "use" the quantum circuit

"Dressing" a quantum circuit with two classical layers

Two advantages: 1) Complete flexibility in the number of inputs and outputs

2) Classical layers can "learn" how to "use" the quantum circuit

Example: classification a benchmark dataset

- 2000 training points
- 200 test points
- 1000 iterations (Adam optimizer)
- Cross entropy loss function

Outline

Machine learning with variational quantum circuits

2 Quantum transfer learning

3 Classification of high-resolution images with QPUs

Transfer learning

"i.e., using some previous knowledge for learning something new"

Daily-life examples: • Learning a second language (knowing the first)

- Learning how to write (knowing how to read)
- Learning to play football (knowing how to run)

The same idea has been applied to **classical neural networks!**

Transfer learning

"i.e., using some previous knowledge for learning something new"

Daily-life examples: • Learning a second language (knowing the first)

- Learning how to write (knowing how to read)
- Learning to play football (knowing how to run)

The same idea has been applied to **classical neural networks!**

- What about quantum variational networks?
- Is it possible to transfer some *knowledge* at the classical-quantum interface?

Quantum (and classical) transfer learning

Quantum (and classical) transfer learning

• Example with classical networks: "ants" vs "bees" (PyTorch tutorial)

Quantum-to-classical transfer learning

Ok but, in practice, how can we train a hybrid classical-quantum network?

Is there any "quantum analog" of *TensorFlow* or *PyTorch*?

Quantum-to-classical transfer learning

Ok but, in practice, how can we train a hybrid classical-quantum network?

Is there any "quantum analog" of *TensorFlow* or *PyTorch*? **Yes**

Machine learning interfaces		
NumPy TensorFlow O PyTorch	 Automatic (quantum) differentiation 	
ΡΕΝΝΥΙΛΝΕ	Device independent	
Qiskit Cirq rigetti	 Open source github.com/XanaduAI/pennylane 	
Microsoft STRAWBERRY FIELDS	g	
Quantum hardware and simulators		

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri McKiernan, and Nathan Killoran. PennyLane: Automatic differentiation of hybrid quantum-classical computations. 2018. arXiv:1811.04968

Outline

Machine learning with variational quantum circuits

2 Quantum transfer learning

3 Classification of high-resolution images with QPUs

Quantum-to-classical transfer learning

Results:

	ants/bees	m dogs/cats	planes/cars
Quantum depth	6	5	4
Number of epochs	30	3	3
Batch size	4	8	8
Learning rate	0.0004	0.001	0.0007
Accuracy	0.976	0.8270	0.9605
	-	-	

Experiments with real quantum processors

In PennyLane you can do it with a single line of code!

IBM: dev = qml.device("qiskit.ibmq", wires=n_qubits, backend="ibmqx4", ibmqx_token=token)
Rigetti: dev = qml.device("forest.qpu", device="Aspen-4-4Q-A", shots=1024)

Experiments with real quantum processors

In PennyLane you can do it with a single line of code!

IBM: dev = qml.device("qiskit.ibmq", wires=n_qubits, backend="ibmqx4", ibmqx_token=token)
Rigetti: dev = qml.device("forest.qpu", device="Aspen-4-4Q-A", shots=1024)

Results:	\mathbf{QPU}	Accuracy
	Simulator	0.967
	ibmqx4	0.95
	Aspen-4-4Q-A	0.80

Conclusions

• Quantum circuits "dressed" by classical layers

• Theoretical framework for quantum transfer learning

 Experimental classification of high-resolution images

quantum-to-classical or quantum-to-quantum transfer learning ...

Transfer learning in hybrid classical-quantum neural networks. Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria Schuld, and Nathan Killoran. **arXiv:1912.XXXX**, (2019).

For much more details like, e.g.,

Code available at: github.com/XanaduAl/quantum-transfer-learning

Pre-trained

Trainable

Specific dataset

Supplementary material

 $C = L_{4 \to 2} \circ L_{4 \to 4} \circ L_{2 \to 4} \qquad \tilde{Q} = L_{4 \to 2} \circ Q \circ L_{2 \to 4}$