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Premise

A general goal to reach
Given an optimization problem, we need to represent it into a
quantum hardware in order to efficiently solve it.

A general issue to face
The problem encoding can be computationally hard with deleterious
effects on efficiency.

A hybrid quantum-classical approach
Repeated calls of the quantum machine within a classical
iterative structure to represent optimization problems into a
quantum hardware exploiting the quantum resource itself.



Premise

A general goal to reach
Given an optimization problem, we need to represent it into a
quantum hardware in order to efficiently solve it.

A general issue to face
The problem encoding can be computationally hard with deleterious
effects on efficiency.

A hybrid quantum-classical approach
Repeated calls of the quantum machine within a classical
iterative structure to represent optimization problems into a
quantum hardware exploiting the quantum resource itself.



Quantum Annealing
Quantum Annealers
The hardware is a quantum spin glass, i.e. a collection of qubits arranged
in the vertices of a graph (V ,E ) where edges represent the interactions
between neighbors.

Example: D-Wave Chimera topology



Quantum Annealing

Annealing process (annealing time 20µs)
By energy dissipation the quantum system evolves in the ground state
(the less energetic state) corresponding to the solution of a given
optimization problem.

Ising Hamiltonian
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∑
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z = I⊗ · · · ⊗ σz ⊗ · · · ⊗ I and θ0, θi , θij ∈ R (the weights)

Minimization (w.r.t. z) of the function:
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z z ∈ {−1, 1}|V | , θ0, θi , θij ∈ R



Quantum Annealing

Main limitation of quantum annealers?
The cost of the problem embedding into a graph with low
connectivity may destroy the computational speed up!

The quality of the embedding has strong effects on performances...

Possible solutions
• Improvement of the hardware;
• Formulation of efficient problem encodings;
• Hybrid quantum/classical algorithms.



The hybrid paradigm of QC



Hybrid approach to QA
[D.P., E. Blanzieri. Quantum Information Processing 18: 303 (2019)]

Tabu search
A local search in the solution space where worse candidate solutions can
be sometimes accepted and already-visited solutions are penalized.

Tabu search with a quantum annealer

• Generation of candidate solutions by quantum annealing;

• Energetic penalization of a set of quantum states:

Let {z(α)}α∈I ⊂ {−1, 1}n be the set of solutions to be penalized.
Corresponding weights assignment:

θi = b
∑
α∈I z

(α)
i

θij = c
∑
α∈I z

(α)
i z

(α)
j for (i , j) ∈ E

b, c > 0



Hybrid approach to QA

Tabu matrix penalizing {z(α)}α∈I ⊂ {−1, 1}n

S :=
∑
α∈I

[z(α) ⊗ z(α) − In + diag(z(α))]

Tabu-implementing encoding of a binary optimization problem
Let f : {−1, 1}n → R be a function to be minimized.

µ[f ](z) := E (θµ[f ] + PπSPπ ◦ A, π(z))

where:
θµ[f ] is the matrix of weights reproducing some properties of f
π is a permutation and Pπ the permutation matrix.
A is the adjacency matrix of the annealer graph.
◦ is the Hadamard product.



The quantum-classical algorithm

Quantum Annealing Learning Search
Tabu search in the solution space and a guided evolution in the
space of encodings toward a faithful representation of the objective
function f into the quantum annealer architecture.

The hybrid scheme
Definition of a sequence of µ-encodings such that:

• Already rejected solutions are (energetically) penalized;

• The representation of f gets better during the search;

• Convergence to a faithful encoding of the problem (i.e. the limit
annealing process produces one of the global optima)

Repeated calls of the quantum annealer within an iterative structure.
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Data: Annealer graph matrix A of order n
Input: f (z) to be minimized w.r.t. z ∈ {−1, 1}n
Result: z∗ minimum of f

1 randomly generate: µj [f ](z) := EA(θj [f ], πj(z)) , j = 1, 2;
2 find z1 and z2 s.t. π1(z1), π2(z2) minimize EA(θ1, ·) and EA(θ2, ·);
3 evaluate f (z1) and f (z2);
4 use the best to initialize z∗ and the encoding µ∗;
5 use the worst to initialize z′;
6 initialize the tabu matrix: S ← z′ ⊗ z′ − In + diag(z′);
7 repeat
8 from µ∗ generate µ[f ](z) := EA(θ[f ] + PT

π SPπ ◦ A, π(z));
9 find z′ whose image π(z′) minimize EA(θ, ·) in the annealer;

10 if z′ 6= z∗ then
11 evaluate f (z′);
12 if z′ is better of z∗ then
13 swap(z′, z∗); µ∗ ← µ;
14 end
15 use z′ to update the tabu matrix S ;
16 S ← S + z′ ⊗ z′ − In + diag(z′);
17 end
18 until convergence or maximum number of iterations conditions;
19 return z∗;



Convergence for QUBO problems

Quadratic Unconstrained Binary Optimization (QUBO)

Minimize f (z) = zTQz

z ∈ {−1, 1}n, Q is a real symmetric matrix.

Proposition [D.P., E. Blanzieri, 2019]
The hybrid search can be modeled by an inhomogeneous Markov chain.

Let {M(k)}k>0 be the transition matrix.
(k is related to the counter of iterations)

1. ∃! stationary distribution Πk of M(k) for any k .

2. it converges and its limit distribution is

Π∗ = lim
k→+∞

Πk

3. Π∗ is non-zero only on the solutions of the QUBO problem.
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Hybrid approach to Adiabatic Quantum Computing
[D. P., E. Blanzieri. Learning adiabatic quantum algorithms for solving

optimization problems. Submitted (2019) ]

Adiabatic Quantum Computing
It is a model of computation based on adiabatic evolution of quantum
systems. AQC is a universal model of quantum computing.

Goal
Given an optimization problem.
Find an adiabatic quantum algorithm to (efficiently) solve it.

The hybrid algorithm
A convergent tabu-inspired search finds an encoding of the problem into
an adiabatic quantum architecture providing an adiabatic quantum
algorithm and its run time.



Work in progress

Collaborations: Quantum Informatics Laboratory (University of Verona);

Center of high-performance computing (German Aerospace Agency)

• Implementation of the presented hybrid algorithm into the real
D-Wave machine.

• Application of the Quantum Annealer tabu technique to
represent data into quantum Ising model:
• Quantum data compression.
• Quantum machine learning.

• Learning quantum algorithms beyond optimization problems.
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