An artificial neuron model implemented on the IBM quantum processor

Dario Gerace

Dipartimento di Fisica, Università di Pavia

Workshop on QC and HPC – CINECA Bologna, 18/12/2018

Coworkers & Acknowledgments

F. Tacchino

D. Bajoni

C. Macchiavello

* The views expressed in this work do not reflect the official policy or position of IBM and the IBM-Q Team

Artificial neural networks (ANN)

possible model of brain: feed-forward network of interconnected signal processing elements

Each node mimics the functionality of a single neuron

Rosenblatt, Psychol. Rev. 65, 386 (1958)

Applications of ANN

> single perceptron
 → a linear classifier

➤ Evolution into A.I. → translate text, control vehicles, play games, …

Quantum neural network models

Idea: exploit quantum mechanics to enhance neural network computing capabilities

superposition $|\psi
angle = a|0
angle + b|1
angle$

entanglement

DI PAVIA

Most algorithms are difficult to implement on NISQ (Noisy Intermediate Scale Quantum) devices

Schuld et al., Quant. Inf. Proc. **13**, 2567 (2014) Schuld et al., Phys. Lett. A **7**, 660 (2015) Rebentrost et al., Phys. Rev. A **98**, 042308 (2018) Implementing the perceptron on a digital quantum computer

The key function

$$\sum_{j} i_{j} w_{j}$$

Encoding input and weights

Tacchino et al., arxiv:1811.02266 (2018)

Hypergraph states

Rossi et al., New J. Phys. 15, 113022 (2013)

Implementing the perceptron on a digital quantum computer

Quantum algorithm: a circuit model

Tacchino et al., arxiv:1811.02266 (2018)

Pictorial representation

in vector space:

Potential advantages

29 x 29 pixels at 10 pixels per inch

e.g. 20 qubits are sufficient to process 1024x1024 pixels (i.e. 1 Mpixel)

 2^{N} -bit input and weight vectors can be encoded in ± 1 factors in a balanced superposition of the computational basis states of *N* qubits

Exponential advantage in storage

Summary

Single perceptron efficiently implemented on 5-qubits IBM-Q hardware

If scaled, this allows for an exponential scaling of encoding resources

Further work: multilayer networks, continuously valued input/weight vectors...show quatum advantage