

Fighting qubit loss in topological QEC codes: theory and experiments

Davide Vodola Department of Physics and Astronomy Bologna University

Theory and Phenomenology of Fundamental Interactions

UNIVERSITY AND INFN · BOLOGNA

HPC and Quantum Computing - 3rd Edition 15/12/2020

Talk outline

1 - Brief introduction to Kitaev's Toric Code

2 - Qubit Loss Error Correction: Theory...

3 - ... and Experiment

Talk outline

1 - Brief introduction to Kitaev's Toric Code

2 - Qubit Loss Error Correction: Theory...

3 - ... and Experiment

Main obstacle towards quantum computers: errors & losses

Kitaev's toric code

• X type error will anticommute with the Z-type stabilizers

• Z type error will anticommute with the X-type stabilizers

code space

logical states

Logical qubits

Logical operators

must act non trivially within the code space

Logical operators = strings that percolate through the lattice and change the logical state in the code space

code space

Talk outline

1 - Brief introduction to Kitaev's Toric Code

2 - Qubit Loss Error Correction: Theory...

3 - ... and Experiment

Motivation:

Losses and leakage can damage the performance of (topological) QEC codes

Challenges:

- Find protocols to deal with qubit loss
- Understand **robustness** of codes used
- Develop and experimentally test in-situ leakage loss detection and correction protocols

Qubit losses

Redefine the plaquette/vertex and the logical operators

Qubit losses in the toric code

T. Stace, S. Barrett, A. Doherty, PRL **102** (2009) T. Stace, S. Barrett, PRA **81** (2010)

probability p

 $p_c - 1/2$ (square lattice)

Talk outline

1 - Brief introduction to Kitaev's Toric Code

2 - Qubit Loss Error Correction: Theory...

3 - ... and Experiment

Qubit Loss Error Correction: Experiment

Goals

Provide a toolbox for correcting losses in generic quantum codes
Detect if the loss has happened
Decide if correcting or not the code

• Devise the smallest example in a trapped ion setup

R Stricker, DV, A Erhard, L Postler, M Meth, M Ringbauer, P Schindler, T Monz, M Müller, R Blatt Experimental deterministic correction of qubit loss, Nature 585, 207 (2020)

Qubit loss correction with four qubits

Code space

Experimental qubit loss detection and correction: The whole picture

Minimal example 4 physical qubits

Experimental qubit loss detection and correction: The whole picture

Minimal example 4 physical qubits

2 - Qubit loss event

3 - QNP qubit loss detection

3 - Qubit loss detection

Mølmer-Sørensen gate:

 Two-photon resonant process

For the other logical states R Stricker et al, Nature 585 207 (2020)

Conclusions

Quantum error correcting codes can be realised in topological systems

Losses can affect quantum computers but can be cured with success

Experimental schemes for detecting and correcting losses can be developed

R Stricker, DV, A Erhard, L Postler, M Meth, M Ringbauer, P Schindler, T Monz, M Müller, R Blatt *Experimental deterministic correction of qubit loss*, Nature **585**, 207 (2020)

Swansea

University

Thomas Monz Rainer Blatt

Roman Stricker

Martin Ringbauer Philipp Schindler

First slide image: Harald Ritsch http://quantum-physics-illustration.com/